McLab Tutorial
www.sable.mcgill.ca/mclab

Part 6 — Introduction to the McLab Backends

* MATLAB-to-MATLAB
* MATLAB-to-Fortran90 (McFor)
* McVM with JIT

MATLAB-to-MATLAB

We wish to support high-level
transformations, as well as refactoring tools.

Keep comments in the AST.

Can produce .xml or .m files from MCcAST or
MCcLAST.

Design of McLAST such that it remains valid
MATLAB, although simplified.

MATLAB-to-Fortran90

MATLAB programmers often want to develop their
prototype in MATLAB and then develop a FORTRAN
implementation based on the prototype.

15t version of McFOR implemented by Jun Li as M.Sc. thesis.
— handled a smallish subset of MATLAB

— gave excellent performance for the benchmarks handled

— provided good insights into the problems needed to be solved,
and some good initial solutions.

29 version of McFOR currently under development.
— fairly large subset of MATLAB, more complete solutions

— provide a set of analyses, transformations and IR simplifications
that will likely be suitable for both the FORTRAN generator, as
well as other HLL.

e-mail hendren@cs.mcgill.ca to be put on the list of those
interested in McFor.

McVM-McJIT

 Whereas the other back-ends are based on
static analyses and ahead-of-time compilation,
the dynamic nature of MATLAB makes it more
suitable for a VM/JIT.

* MathWorks' implementation does have a JIT,
although technical details are not known.

* McVM/MCcIIT is an open implementation
aimed at supporting research into dynamic
optimization techniques for MATLAB.

McVM Design

* A basic but fast interpreter for the MATLAB
language

* A garbage-collected JIT Compiler as an
extension to the interpreter

* Easy to add new data types and statements by
modifying only the interpreter.

e Supported by the LLVM compiler framework
and some numerical computing libraries.

* Written entirely in C++; interface with the
McLab front-end via a network port.

The Structure of McVM

S=RASINE>> IM Commands
Front-end <<parsing>> .
McVM B Source m files
Language Core Analyses
el Interpreter Type Inference

lIR Types

A
McJIT i Live Variable
Data Types .
: Fallback Logic PN Reaching Defs
Functions I 7

Func Handles b Versioning Logic i Bounds Check
LLVM Emission Copy Analyses
~

il

Boehm GC ATLAS, BLAS, LAPACK LLVM Framework

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Backends- 6

Supported Types

Logical Arrays

Character Arrays

Double-precision floating points

Double-precision complex number matrices

Cell arrays

Function Handles

MclJIT: Executing a Function

flarg_types) Code Cache

Compiled code exists Y2 _ _ L _ N fExecgte
in the code cache? A unction
Mclab lno :
Front-end
I-TTTT T T _ Generate LLVM &
: : IIR exist? Machine Code [€
l : lno
: Parse I) Yes
| f : ' Load function
' function :
: e : l Perform
| ge)rzlf/lrite : Send code string to analyses &
: | the front-end; | Pars-,e XML; |] transformations
! : receive AST as XML build AST
|
|

Type Inference

* |tis a key performance driver for the JIT
Compiler:

— the type information provided are used by the JIT
compiler for function specialization.

Type Inference

* |tis a forward flow analysis: propagates the set of
possible types through every possible branch of a
function.

e Assumes that:

for each input argument arg, there exist
some possible types

e At every program point p, infers the set of
possible types for each variable

* May generate different results for the same
function at different times depending on the
types of the input arguments

Lattice of McVM types

Top (Unknown type, could be any)

\

Function handle atrix-like types

Cell Array Matrlx types

Chararray Loglcalarray Double matrix Complex Matrix

Bottom (No information inferred)

Internal Intermediate Representation

e Asimplified form of the Abstract Syntax Tree
(AST) of the original source program

* |t is machine independent
* AlllIR nodes are garbage collected

lIR: A Simple MATLAB Program

.m file

IR form

function a = test(n)
a = zeros(1,n);
fori=1:n
a(i) = i*i;
end

end

function [a] = test(n)
a = zeros(1, n);
Stl1=1;St0=1;
St2 = St1; St3 =n;
while True
St4 = (St0 <= St3);
if ~St4
break;
end
i = StO;
a(i) = (i *i);
St0 = (StO + St2);
end

end

McVM Project Class Hierarchy (C++ Classes)

i LamibdaExpr
BinaryOpExpr CellArrayExpr CellindexExpr EndExpr FnHandleExpr IntConstExpr B
FPConstExpr
f MatrixExpr RangeExpr
Expression ParamExpr

UnaryOpExpr SymbolExpr StrConstExpr |

lIRMode

ProgFunction

Function
"i"_\' <]_ LibFunction

Statement

.'f'}'. aprivate s

AssignStmt Exprstmt ForStmt IfEIseStmit SwitchStmit WhileStmt DataObject

(‘:]‘

_________ = f'j ArrayObj
— ScalarType:ScalarType | [I
—_—

MatrinObj BaseMatrixOhbj FnHandleOhbj

RangeObj

Running McVM

[FEE Terminal
File Edic View Search Terminal Help

bear:~/mcvm2.8/mclab/mcvm-11vm2,8/debug> ./mcvm -jit enable true -start dir ~/pldill mclabtutorial/

3K KKK KKK KKK K KR 3K KRR K K K K K KK KKK KK KK KK KKK RO K

McVM - The MclLab Virtual Machine v1.0

Visit http://www.sable.mcgill.ca for more information.
ok sk sk sk ok sk stk sk sk kook e ok sk skl s sk ok stk sk st stk s kool ok sk sk ok ok R sk sk sk ok sk ko ok ok sk ko skok ko

> ¢ = test(10);
Compiling function: "test"
> C
ans =
matrix of size 1x10
1 4

>: |

