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Part 6 — Introduction to the McLab Backends

* MATLAB-to-MATLAB
* MATLAB-to-Fortran90 (McFor)
* McVM with JIT




MATLAB-to-MATLAB

We wish to support high-level
transformations, as well as refactoring tools.

Keep comments in the AST.

Can produce .xml or .m files from MCcAST or
MCcLAST.

Design of McLAST such that it remains valid
MATLAB, although simplified.



MATLAB-to-Fortran90

MATLAB programmers often want to develop their
prototype in MATLAB and then develop a FORTRAN
implementation based on the prototype.

15t version of McFOR implemented by Jun Li as M.Sc. thesis.
— handled a smallish subset of MATLAB

— gave excellent performance for the benchmarks handled

— provided good insights into the problems needed to be solved,
and some good initial solutions.

29 version of McFOR currently under development.
— fairly large subset of MATLAB, more complete solutions

— provide a set of analyses, transformations and IR simplifications
that will likely be suitable for both the FORTRAN generator, as
well as other HLL.

e-mail hendren@cs.mcgill.ca to be put on the list of those
interested in McFor.




McVM-McJIT

 Whereas the other back-ends are based on
static analyses and ahead-of-time compilation,
the dynamic nature of MATLAB makes it more
suitable for a VM/JIT.

* MathWorks' implementation does have a JIT,
although technical details are not known.

* McVM/MCcIIT is an open implementation
aimed at supporting research into dynamic
optimization techniques for MATLAB.



McVM Design

* A basic but fast interpreter for the MATLAB
language

* A garbage-collected JIT Compiler as an
extension to the interpreter

* Easy to add new data types and statements by
modifying only the interpreter.

e Supported by the LLVM compiler framework
and some numerical computing libraries.

* Written entirely in C++; interface with the
McLab front-end via a network port.



The Structure of McVM
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Supported Types

Logical Arrays

Character Arrays

Double-precision floating points

Double-precision complex number matrices

Cell arrays

Function Handles



MclJIT: Executing a Function
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Type Inference

* |tis a key performance driver for the JIT
Compiler:

— the type information provided are used by the JIT
compiler for function specialization.



Type Inference

* |tis a forward flow analysis: propagates the set of
possible types through every possible branch of a
function.

e Assumes that:

for each input argument arg, there exist
some possible types

e At every program point p, infers the set of
possible types for each variable

* May generate different results for the same
function at different times depending on the
types of the input arguments



Lattice of McVM types

Top (Unknown type, could be any)
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Internal Intermediate Representation

e Asimplified form of the Abstract Syntax Tree
(AST) of the original source program

* |t is machine independent
* AlllIR nodes are garbage collected



lIR: A Simple MATLAB Program

.m file

IR form

function a = test(n)
a = zeros(1,n);
fori=1:n
a(i) = i*i;
end

end

function [a] = test(n)
a = zeros(1, n);
Stl1=1;St0=1;
St2 = St1; St3 =n;
while True
St4 = (St0 <= St3);
if ~St4
break;
end
i = StO;
a(i) = (i *i);
St0 = (StO + St2);
end

end




McVM Project Class Hierarchy (C++ Classes)
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Running McVM

[FEE Terminal
File Edic View Search Terminal Help

bear:~/mcvm2.8/mclab/mcvm-11vm2,8/debug> ./mcvm -jit enable true -start dir ~/pldill mclabtutorial/
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McVM - The MclLab Virtual Machine v1.0

Visit http://www.sable.mcgill.ca for more information.
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> ¢ = test(10);
Compiling function: "test"
> C
ans =
matrix of size 1x10
1 4
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