Phase-based adaptive recompilation in a JVM

Dayong Gu Clark Verbrugge

School of Computer Science
McGill University
Montréal, Québec, Canada

{dgul, clump}®@cs.mcgill.ca

Abstract regions and applies different optimizations, balancing th

Modern JIT compilers often employ multi-level recompila- overhead costs of optimized (re)compilation with expected

tion strategies as a means of ensuring the most used code i§2ins in runtime performance. _ o
also the most highly optimized, balancing optimizationtsos Building a high-performance, adaptive recompilation
and expected future performance. Accurate selection af cod Strategy in a JVM requires making resource-constrained
to compile and level of optimization to apply is thus impor- ch0|ce_s as t_o which methods to optimize, vv_hqt set or Ie\(el
tant to performance. In this paper we investigate the effect ©f OPtimization to apply, and when the optimized compi-
of an improved recompilation strategy for a Java virtual ma- 1ation should be done. Heuristically, the earlier the mdtho
chine. Our design makes use of a lightweight, low-level pro- 1S compiled to it's “optimal” optimization level the better
filing mechanism to detect high-level, variable length gsas 'VaiVely assuming optimal means more optimizations, the
in program execution. Phases are then used to guide adap_pote_ntlal for such |mprovem_ents is illustrated sc_hemﬂylca
tive recompilation choices, improving performance. We de- I Figure 1. The upper left image shows a typical method
velop both an offline implementation based on trace data andniStory, compiled initially at a low level, and progressye
a self-contained online version. Our offline study shows an "€compiled to higher optimization levels. Better predinti
average speedup of 8.5% and up to 21%, and our online Sys_of future behaviour allows a mgthod to move more qU|cI§Iy
tem achieves an average speedup of 4.5%, up to 18%. webetween these steps (upper right), or to skip intermediate
subject our results to extensive analysis and show that ourSteps (lower I“eft). The”area under the curve (rectanglej sum
design achieves good overall performance with high consis- Marizes the “amount” of optimized method execution. On

tency despite the existence of many complex and interactingtN€ Pottom right a method is compiled to its highest opti-
factors in such an environment. mization level immediately; this roughly represents anerpp

limit for the potential performance gains, at least assgmin
Categories and Subject Descriptors D.3.4 [Processorp simple models of method execution and optimization im-
Optimization, Run-time environments, Compilers pact.
One of the key factors involved in finding ideal recompi-
lation choices for a given method is metHddtime.Method
Keywords Virtual machine, Java, adaptive optimization, lifetime is an estimate of how much future execution will

General Terms Languages, Performance, Measurement

runtime technique, hardware counters be spent in a given method based on current and past be-
haviour; techniques for estimating method lifetime aré- cri
1. Introduction ical in making online recompilation decisions. A straight-

forward solution used in the JikesRVM [1, 4, 2] adaptive
recompilation component is to assume that the relative pro-
portion of total execution time that will be spent in a given
method is the same as its existing proportion: the ratio of fu
ture lifetime to past lifetime for every method is assumed to
be 1.0. This is a generally effective heuristic, but as an ex-
tremely simple predictor of future method execution time it
is not necessarily the best general choice for all programs o
at all points in a program’s execution.

Our work aims at investigating and improving the predic-
tion of future method execution times in order to improve
[copyright notice will appear here] adaptive optimization decisions. To achieve better predic

Many of today’s Java Virtual Machines (JVMs) [36] employ
dynamic recompilatioechniques as a means of improving
performance in Java programs. At runtime the dynamic Just-
in-Time (JIT) compiler locates a “hot set” of important code

OOPSLA paper about program phases and method recompilation 1

with larger working sets and more variable behaviour should

perform better with adaptive recompilation. We consider a

number of confounding factors and include a detailed in-

vestigation of the source and extent of improvement in our

benchmarks, including potential variability due to chaide

%0 2468101210612 %0246 81012101612 recompilation algorithm. Our results show that our phase-
sampes sampes based optimization provides greater benefits in terms of per

formance, stability, and consistency than current designs

simpler optimizations.

Contributions of this work include:

Opt. Level
Opt. Level
N

Opt. Level
Opt. Level

¢ \We demonstrate a lightweight system for obtaining high-

%02 4681121416182 %0246 810121415182 level, variable length and coarse grained phase informa-
samples sameles tion for Java programs. Other phase analyses concentrate
Figure 1. Sources of optimization due to improved recom- ©n finding fixed length and/or fine-grain periods of sta-
pilation decisions for a given method. In each casertlagis bility.
is samples (normalized time), and thexis is optimization * We give the results of an offline study of the head space
level. More time at higher optimization heuristically mean for optimization in the selection of hot-method recompi-

better performance, and so the area under each curve roughly lation points based on our phase information. In the case
represents how well a method is optimized. Left to right on of repeated or allowed “warm up” executions our study
the top row are base recompilation behaviour and the result represents an effective optimization by itself.

of more aggressive recompilation. The lower row shows the
effects of skipping some intermediate recompilation steps
(left), and of making an initial “ideal” choice, skippind &i-
termediate recompilation (right). Note that even in théelat
case at least 1 sample is required to identify the hot method.

¢ \We present a new dynamic, phase-based hot-method re-
compilation strategy. Our implementation incorporates
online data gathering and phase analysis to dynamically
and adaptively improve recompilation choices and thus
overall program performance.

We provide non-trivial experimental data, comparative

tions we divide Java program execution into coarse phases; 'esults, and detailed analysis to show our design achieves
different phases imply different recompilation strategand significant and general improvement. Potential variation,
by detecting or predicting phase changes we can appropri- identification of influences, and consideration of the pre-
ately alter recompilation behaviour. We perform aifline cise source of improvements and degradations are im-
analysis of the practical *head space” available to such an Portant for optimizations to complex runtime services in
optimization that depends orpast mortenanalysis of pro- modern virtual machines.

gram traces, allowing the method recompilation system to The remainder of this paper is organized as follows. In
perform as in the bottom right of Figure 1. We also develop section 2 we discuss related work on hot method set iden-
an online analysis that is more practlc_al and dynamically tification, profiling techniques, phase detection/preditt
gathers and analyzes phase information. To keep our on-gnq hardware counters. Our main data gathering system and
line system lightweight, we base our phase analysis on hard-pnase prediction systems are described in Sections 3 and 4
ware counter information available in most modern proces- respectively. Performance results and analytical measure
sors, recovering high-level phase data from low-level ven ents are reported in Section 5, and Section 6 provides de-

data. Based on our JikesRVM implementations we observeyjieq data analysis and discussion. Finally, we conclude a
an average of 8.5% and up to 21% speed improvementin OUrprovide directions for future work in Section 7.

benchmark suite using the offline approach, and an average
of 4.5% and up to 18% speedup in our benchmarks using our
online system, including all runtime overhead. 2. Related Work
Although these results demonstrate significant potential, JIT compiling and optimizing all the code of a program can
changes to the dynamic recompilation system introduce easily introduce far too much overhead, both in time and re-
feedback in the sense that different compilation times and sources. JVM JIT compilers thus typically attempt to iden-
choices perturb future recompilation decisions. There aretify a smaller hot set on which to concentrate optimization
also many potential parameters of our design, and differenteffort. This kind of adaptive optimization allows sophisti
kinds of benchmarks can respond quite differently to adap- cated optimizations to be applied selectively, and has been
tive recompilation—programs with small, core method exe- widely explored in the community [31, 40, 4]. Most of this
cution sets and long execution times can be well-optimized work focuses on methods as a basic compilation unit, but
without an adaptive recompilation strategy, while proggam other choices are possible; Whaley, for instance, presents

OOPSLA paper about program phases and method recompilation 2

an approach to determining important intra-method code re- niques work in a reactive manner; program behaviour changes
gions from dynamic profile data [54]. In all these efforts are observed only after the occurrence of the changeeA
recompilation overhead is reduced by avoiding compiling dictivemechanismis clearly more desirable for optimization
and optimizing rarely used code, based on either the as-purposes. Prediction techniques can be roughly divided int
sumption that “future = past,” or by using simple counter- two types:statistical predictiorandtable-based predictian
based schemes to determine relative execution frequency. Statistical predictors estimate future behaviour based on
Our work here augments these approaches by concentratrecent historical behaviour [20]. Many statistical predis
ing on the specific problem of providing additional predic- have been developed, includitast valug average(N)most
tive information to the adaptive engine of a JVM in order frequent(N)and theexponentially weighted moving aver-
to improve optimization decisions, rather than providingt age(EWMA(N)) predictors. Statistical predictors have been
concrete adaptive optimization framework itself. widely used in optimizations based ¢(meturn) value predic-
One of the crucial technical challenges for adaptive opti- tion [41, 13, 23, 39]. Huet al. present gparameter stride
mizations is to gather accurate profiling data with as low an predictor that predicts return values as a constant offget f
overhead as possible. Profiles can be obtained from progranone parameter [27]Table-basedredictors allow for more
instrumentation or from a sampling scheme. Instrumemtatio arbitrary correlation of program activity and predicted be
techniques are widely used in adaptive optimization: by in- haviour. Mappings between events or states and predictions
serting instrumentation into a program, we can gather ac- of the future are stored in a table and dynamically updated
curate profiles at a fine granularity. For example, Dynamo when large behaviour changes are identified. Pickett and
[7] uses instrumentation to guide code transformations. In Verbrugge develop memoizatiorpredictor forreturn value
strumentation techniques are also useful in program under-predictionthat correlates function arguments with likely re-
standing; Daikon [21] is a system for dynamic detection of turn values [41]. Sherwood and Sair use a table-based tech-
likely invariants in a program through instrumentationeBv ~ nique to to perfornrun length encoding phase prediction
commercial JVMs provide a basic instrumentation interface based on patterns in low level branch data [46]. Duester-
through Sun’s JVMTI specification [51]. Unfortunately, in- wald et al. give a general study on predicting program be-
strumented profilers can also be fairly heavyweight, preduc haviour [20], comparing statistical and table-based nmodel
ing large runtime overheads [15, 14]. This has inspired work operating on fixed size intervals. Their experimental rissul
on reducing instrumentation overhead, such as that by Ku-show that table-based predictors can cope with program be-
mar et al. in their INS-opsystem that optimizes (reduces) haviour variability better than statistical predictorsair@re-
instrumentation points [33]. diction technique is largely table-based as well; we use a
Alternatively, runtime profiles can be gathered by sam- mixed global/local history and give prediction resultshwat
pling. In a sampling-based approach, only a representativeconfidence probability.
subset of the execution events are considered, and this can Phase information can be used to locate stable or repeti-
greatly reduce costs. Systems such as JikesRVM [4, 2], usetive periods of execution at runtime, and has been incorpo-
a timer-based approach to determine sampling points. Onrated into various adaptive optimizations and designsyer d
some other systems, such as IBM’s Tokyo JIT compiler namic system reconfiguration [8, 16, 18, 28, 44]. Nagpurkar
[50] and Intel's ORP JVM [17], a count-down scheme is etal.present a flexible scheme to reduce network-based pro-
used. An optimization candidate is chosen when the corre-filing overhead based on repetitive phase information gath-
spondingcounterreaches a pre-defined value. Arnold and ered from remote programs [38]. Theinase trackers im-
Grove present an approach that combines the timer-baseglemented using the SimpleScalar hardware simulator [12].
and count-down schemes [5]. Based on the original timer- Data for phase analysis may in general be gathered through
based scheme in JikesRVM, a stride counter is set to controloffline analysis of program traces, or through online tech-
a series of non-contiguous burst count-down sampling ac- niques. Nagpurkaet al. present an online phase detection
tions. algorithm that detects stable, flat periods in program execu
A sampling-based strategy allows the system to reducetion as useful phases [37], and further provide a set of accu-
the profiling overhead with reductions in profiling accuracy racy scoring metrics to measure the stability and length of
as a tradeoff. Many techniques have been developed to rethe detected phases. Phases based on various statistiés are
duce profiling overhead while maintaining profiling accu- course also possible, and many different data measurements
racy at a reasonable level. For instance, Zhuetrg. [55], have been considered for phase analysis work. Dhodapkar
for instance, develop an adaptive “bursting” approach to re al. make a comparison between several detection techniques
duce the overhead while preserving accuracy. The key ideabased orbasic block vectors, instruction working setsd
of this work is to perform detailed and heavy profiling, but conditional branch countl 9]. Phase data is also often em-

only at selective points. ployed for high level program understanding [49, 22].
Phase work can be generally considered with respect Most phase analysis techniques are based on fixed-length
to phasedetectionand/or phas@rediction.Detection tech- intervals, aiming to detect stable periods of program execu

OOPSLA paper about program phases and method recompilation 3

tion [8, 45, 26]. For programs with complex control flow, of the runtime measurement component. By taking phase ad-
such as Java and other object-oriented programs, at the levvice into account, the adaptive recompilation engine ig abl
els of granularity useful for optimization there may be no to make better adaptive recompilation decisions, as we show
actual flat and stable phases, even if there is obvious peri-in our experimental data. Below we provide more detailed
odicity. For such situations the majority of techniques and descriptions of the core components of our implementation
associated quality metrics are not sufficient to captureor a design and environment.

curately present program phases. Basic problems with phase

granularity are starting to be considered; le@l.pointout 3.1 Hardware performance data

the intrinsic problem of fixed interval designs being “out of Hardware performance datais acquired by reading hardware-
synchronization” with the actual periodicity of the execu- specific performance counters. Fundamentally, the haelwar
tion, and graphically show that it is necessary to study-vari counters in modern processors are a set of registers. Val-
able length intervals [34]. Here we use actual hardware datayes in these registers can represent a variety of hardware
to detect coarse, variable length, recurrent phases in-a pro events, such as machine cycles, instruction and data L1/L2
gram and use it to give useful advice to the adaptive engine cache misses, TLB misses, and branch predictor hits/misses
of a JVM. Counter data reflects the performance of the underlying
To actually gather hardware data we make use of the spe-hardware directly and collecting it imposes little overtiea

cialized hardware performance counters available in moder Critically, although hardware counter data is low level it
processors. Hardware counters can provide important micro can be related to high level aspects of program behaviour.
architectural performance information that is difficultior- Lau et al. show there is a strong relation between hardware
possible to derive from software techniques alone. Theseperformance and code signatures or instruction working set
data allows the program behaviour to be more directly under- [35]. Our implementation mainly samples the “L1 instruc-
stood from the viewpoint of the underlying hardware plat- tijon cache miss” event, an event known to correlate well with
form, and although low level, this information can be used method execution behaviour [25]. The HPM component of
for guiding higher level adaptive behaviour. Bare¢sl.use JikesRVM is used to gather our raw hardware event data. To
hardware profiling to detect hot code regions and apply codeensure a lightweight design our system samples events only
optimizations efficiently [9]. Schneider and Gross present at each process context switch point; in a typical benchmark

runtime compiler framework using instruction level infor- thjs produces several thousand sample points per benchmark
mation provided by hardware counters to detect hot spotsyyn.

and bottlenecks [43]. Their work provides a platform to
study the relation between dynamic compiler decisions and3.2 Hardware event pattern construction

hardware specific properties. Kistler and Franz describe th 1, yetect coarse grained and variable length phases the in-
Oberonsystem that performs continuous program optimiza- put hardware event data is inspected for patterns. gar
tion [32]. They describe the benefits of using hardware coun- 1,1, analysis modeliscovers simple patterns by observing
ters in addition to software based techniques as cruciat com 1,4\ event density changes over time, and looking for dis-
ponents of their profiling system. Other works based on yinet sequences of change. There are many parameters pos-
hardware event information can be found in [3, 42, 52, 25]. gjhje in such a design, and here we provide an overview of an
Many software apphcatl_ons a_nd libraries are available to approach optimized for accuracy, generality, and sinptici
access these counters, including VTune [30], PMAPI [29], recise details of the pattern construction process and pa-
PCL [10] and PAPI [11]. In this work, we use the PAPIli- 5 eter justification are available in a technical repo#] [2
brary. Our technique operates by summarizing low-level be-
haviour with short bit-vectors that encode the overallgratt
3. Basic System of variation. We use of a “second order” approach that con-
siders variation in hardware event counts rather than atesol
counts themselves as the basic unit to focus the technique on
detecting changes in behaviour, heuristically important f
identifying phases. The actual algorithm for translatingh
ware event data to bit-vector patterns involves first coarse
ing the (variation in) data into discrelvels and then build-
ing a corresponding bit-vectghaperepresentation.

Our system design is based on an extension to the cur-
rent recompilation system in JikesRVM. Figure 2 shows
the overall structure and components of our base system
and how it integrates with JikesRVM. Raw hardware event
data is obtained through thHeardware performance moni-
tor (HPM), a pre-existing componentin JikesRVM. The pat-
tern analysis model detects “patterns” in the hardware. data
Through comparison with previous patterns stored in the e Levels A basic discretization is applied to variations in
pattern databasehe pattern analysis model detects the cur- event density data to coarsen the data and help identify
rent phase of an executing program. Phase information is changes that indicate significant shifts in behavior. We
then used to give advice on the program phase to the adap- compute the density of events over time for each sample.
tive recompilation engine, and also to control the behaviou By comparing the density of the current sample with that

OOPSLA paper about program phases and method recompilation 4

Hardware

Hardware Program phase

Recompilation

i Performance ~eran > Pattern Analysis Model
LN

Monitor

advice

Hardware
Counters

Hot method
samples

Profiling
advice

Runtime Measurement
Component

Pattern DB

7| Analytic Model

Recompilation Recompilation

decisions

71 Subsystem :

Adaptive Recompilation System

Figure 2. The cooperation among hardware performance monitor,rpadtealysis model and adaptive optimization compo-

nents.

of the previous sample, we obtain a variatign This
variationV is discretized to to a corresponding levgy;.
In our experiments we use 4 discrete levels.

e ShapesWe determineshapesby observing the direc-
tion of changes, positive or negative, between consecu-

A

Get hardware data D
V = Variation(D,D_last)
Pv=Lev(V)

Pv > Qw?

tive samples. Complexity in shape construction is mainly
driven by determining when a pattern begins or ends.

Start a new pattern construction: No

Qw = Pv
ShapeCode=[]

Each shape construction is represented by a(p%irv),
where Py is a level associated with the beginning of
the shape, and is a bit-vector encoding the sign (pos-
itive, negative) of successive changes in event density.
Given data with levePy, if there is no shape under con-
struction a new construction begins with an empty vec-
tor: (Py,[]). Otherwise, there must be a shape under
construction(Qw,v). If Qw = Py, or we have seen
Qw > Py less tham times in a row, then shape con-
struction continues based on the current shape construc-

Y

Compute shape bits S of V as:
case (Pv < Qw) : S =00
case (Pv==Qw) && (V >0) : S =01
case (Pv==Qw) && (V < 0): S =10

)’

ShapeCode += S; |

Yes

Report pattern to analysis model |

tion (Qw,7): a bit indicating whethet” > 0 or not is
added to the end af.

The following conditions terminate a shape construction:
1. If we find Qw < Py we consider the current shape

Figure 3. A flow chart for pattern construction.

building complete and begin construction(df,, []). rithm, Qw to represents the level of the pattern currently
Increases in variation of event density are indicative under construction. Initially the value ¢fy is set to -1 to
of a significant change in program behavior. indicate no pattern is under constructionAf > Qv then

2. If we find Qw > Py, n times in a row the current
shape has “died out”. In this case we also consider the
current shape building complete. In our experiments
we have foundn = 2 is sufficient for good perfor-
mance.

we are facing a larger and hence more important variation
than the one that began the current pattern constructian. Th
current pattern is thus terminated and a new pattern con-
struction associated with levél, begins. The value oPy

is assigned td@)y, and the shape code vector (denoted as

ShapeCod@ Figure 3) is blanked. Otherwisé’(; < Qw)
3.1fin (Qw,v) we find [7| has reached a predefined 4nq the current pattern building continues.
maximum length we also report the current construc- The gctual pattern encoding is based on the relation be-
tion as complete. In our experiments we use a maxi- yeenp;,, Qy and the sign of’. Two bits will be appended
mum of 10 bits as a tradeoff of storage cost and ex- {5 the currentShapeCodesach time a pattern grows1
pressiveness in patterns. means a positive variation at lev@ly, 10 represents a neg-
ative variation at leveQ)y, and00 means either a positive
A overview of the pattern construction algorithm is or negative variation at a level bela@yy, . Binary 1s in our

shown in Figure 3. After obtaining hardware ddfa we scheme thus indicate points of significant change. Construc
compute the variatiol betweenD and the same datd)as) tion continues until one of the pattern termination corahis

for the previous interval/” is then mapped from a real value is met, at which point we report the pattern to the pattern
to an integer valué’, € {0,...,n}, representing the level analysis model. A concrete example of the construction of a

of V. As mentioned in the formal description of this algo- pattern is shown in Figure 4.

OOPSLA paper about program phases and method recompilation

~ 0s ———o *~—o —e
° [I
-0.5 - : \
Hardware dataj, Variation @
1 2 3 4 5 6 s s 4 s 6 Tri-distance Selection Algorithm
"~ a0 Dual-ch |s¢| tion Algorith
W2 (A) (A) Lv2><A> (A) ual-Channel selecton Algorithm
Lvl <V> Lvl <V> |
wo Level (7)()|s o Pattern (¥)(4)| 4 2 v
oo e oo e Channel | Channel |1
Figure 4. Pattern construction example. (1) Acquire the raw
hardware data. (2) Calculate the variation between consecu _
tive points. (3) Coarsen the variation into different leszel Comparison
the triangles inside each circle show the direction (nega-
tive/positive) of variation. (4) The final pattern constion < Prediction Result >
results; the arrow on the y-axis indicates that we obtain a
level 2 pattern; the number above each circle shows the 2- Figure 5. Overview of the prediction mechanism.

bit code for each variation. The four trailing zeros are emit
ted (the pattern has died out), and the final pattern code is

010001 of performance and accuracy. Prediction updates are per-

formed by heuristically evaluating these distances fovarmi

h . b lied incoming pattern to find the most likely, variable length-pat
The same pattern construction strategy can be applied oo, repetition. Outri-distance selection algorithrapdates

gny h?rdware ever|1t counter, and mkgeneral far;]y s_calar e_/en[he likely choices for an incoming patteprby tracking three
ata. In our actual system we make use of the instruction repetitionsD;, i € {0, 1,2}:

cache miss density as a hardware event, found useful by oth-
ers and confirmed effective in our own experiments. Sec- e For eachD; we keep a repetition length;, measured by
tion 6 discusses this issue further, but a more thorough in- subtracting time stamps of occurrences, and a “hotness”
vestigation of different events and event combinationsfis | value H,.

for future work. « The differencel; between the current pattern occurrence

3.3 Pattern analysis and prediction p and the ending point of each &f; is calculated.

Pattern analysis and prediction consumes created hardware® |f the difference betweeff; and L; is smaller than a
patterns. Here we further examine the patterns to discover thresholdr’, the hotnesd/; is increased. Otherwisé/;
repetitive phases and generate predictions of future pro- IS decreased.
gram behaviour. All created patterns are stored fratiern e If the difference betweel; and L; is larger thanT
databaseThe recurrent pattern detection and prediction are for all three D;, we replace theD; associated with the
based on the information in the pattern database and the lowest hotness with a ne®,. The lengthL; is based on
incoming pattern. the distance to the closest of the current seDgf and
The recurrent detection is straightforward: if we find a hotnesdd;, is initialized to a constant value representing
newly created pattern that shares the same pattern code as a a low but positive hotness in order to give the new pattern
pattern stored in the pattern database we declare it to have a chance to become established.
recurred. An actually repetitive phase, however, is not de-

=77 e We use theD; with the greatest hotness as the prediction
clared unless the current pattern also matches the predlicti

result; H; further functions as a confidence value for this

results. o _ . . prediction.
The prediction strategy we use is a variant of fixed-length,
local/global mixed history, table-based prediction. Wali With the current prediction updated we then make a final

more direct table-based methods our predictions include anprediction from the global set of pattern updates. In thigeca
attached “confidence” value; this allows us to track mudtipl we use two global prediction “channels” to limit the cost
prediction candidates and select the most likely. of choosing among all possible patterns. @ual-channel
Figure 5 gives an overview of our prediction scheme. For selection algorithmis similar to the tri-distance selection
each pattern, we keep the three most popular repetition “dis algorithm: if the current prediction matches one or both of
tances” from a former occurrence to a later one; our experi- the prediction channels the channel hotness is increased by
ments showed that three candidates provided a good balancéhe prediction confidence, and if it matches neither then

OOPSLA paper about program phases and method recompilation 6

the coldest channel is replaced. The hottest channel themd.1 Offline trace-driven mechanism

determines the global prediction result. Recompiling a hot method to an ideal optimization level at

3.4 Adaptive recompilation system in JikesRVM the earliest point in program execution will in general max-
imize the benefit of executing optimized code, as well as
eliminate further potential compilation overhead from the
method. For a recompilation mechanism based on runtime
sampling data, knowledge of the final optimization level of a
method at the time when the first sample of it is taken repre-
sents ideal results with minimal profiling overhead. Optima
ity is bounded by the accuracy of the estimation, including
. o . X heuristic choices that balance optimization costs and-bene
The crucial point is the decision-making strategy of the fits. Here we implement an offline trace-driven optimization

;’:mally t'%mo?jel' This se!ects beftvx;]een d|ﬁerelné opt::nm;au htechnique to discover the approximate improvement head
eve's, based on an Qs'umate o’ the p‘?te”“a ene It of eac space if optimal choices are made in the sense of maximizing
level. For each optimization level0 < i < N), JikesRVM the heuristic benefit
gives an estimate of the execution sp&glof a methodn. '

h | . be diff for diff latf . Implementation of the offline mechanisn®ffling) is
€ value oLy can be di ergnt_or ! e_r_ent pat orms, in straightforward. A set of traces from training runs is gath-
our system/N = 3. A recompilation decision is then made

based he followi oo ered, analyzed, averaged, and used in a subsequent replays
ased on the following computations: of the program to select an appropriate optimization level

The adaptive recompilation system [4] of JikesRVM in-
volves three main subsystemsréntime measurement com-
ponentis responsible for gathering method samples. An
analytic modelreads this data and makes the decision on
whether to recompile a method and the appropriate opti-
mization level. The recompilation plan is fed to tleeompi-
lation subsystemwhich carries out the actual recompilation.

e T,: The time of the program already spentsin It is for each recompiled method. Use of multiple runs accom-
computed as modates minor variations in performance; sources of noise
in recompilation data is discussed more fully in Section 6.
T, = SampleNumber TPS Implementation details include that:
TPSstands for “time per sample,” a constant value in
JikesRVM. e First, training data is gathered; a Java program is exe-
e T;: The expected time ofn at leveli, if it is not re- cutedN times to produce trace filé§ (1 <i < N).
compiled. In the original implementation, the system as- e Each tracel; is composed of a set of paits M, L; >.
sumes: M is a particular method, ang; is the last and highest
T; =1, (1) optimization level ofM in T;.
e C;: The cost of recompiling methogh at level j, for * A summary tracels is constructed, composed of pairs
i<j<N. < M,Ls >, whereL, = Max(L1,Lo,...,Ly) for a
. . . given M.
e T;: The expected time the program will spenchirin the
future, if it is recompiled at level: e In the tested rungl; is loaded at the beginning of execu-
tion. Each time a method samplé is taken, if we can
T; = T; * S_Q find a record< M, L, > for itin T, we recompileM
Sp, to level L directly, and mark the recompilation as a final

) , o decision. No further compilation will be applied id.
The analytic model chooses the ley¢hat minimizes the

value ofC;; + T}, the compile time overhead and expected *® It iS possible that speed gains due to better adaptive re-
future time inm. If C;+T; < T}, thenm will be recompiled compilation allows a method not recompiled in any train-
to level . ing run to be added to the hot set in an actual run. If

we cannot find a record fakb/ in T, M is treated per
4. Phase Analysis JikesRVM’s original recompilation strategy. Note that in
our experiments such cases are rare and involved in-
frequently executed methods; the impact of this diver-
gence in hot set identification is reasonably expected to
be small.

Improvements to the prediction model used by the adaptive
recompilation engine have the potential to improve perfor-
mance, executing highly optimized code more often and de-
creasing the overhead of successive recompilations. We in-
vestigate the improvement from two perspectives. The first
is an offline technique based on trace data; this mainly serve Performance results from the offline strategy are given
to give a sense of the maximal benefit that could be reachedin Section 5.1. On some benchmarks the benefit obtained
given optimal information. The second is a purely online im- is quite significant, confirming both the potential avaitabl
plementation, that uses our low-level profiling and dynamic to a more flexible online optimization, and the value of our
phase systems to improve predictions. offline design as an optimization unto itself.

OOPSLA paper about program phases and method recompilation 7

4.2 Online mechanism | Phase [HW EventBehaviour Recompilation]
The success of an online recompilation system depends orp __Newborn || No recurrence of patterns| Less aggressive

the accuracy of methotifetimes or the future time spent Young || Recurrence of patterns | More aggressive
in a method, as well as other recompilation cost and bene- Mature || Less new patterns Moderately
More old patterns aggressive

fit estimates. Underestimating future method executioe tim
results in missed optimization opportunities, while ogere
timating runs the risk of being overly aggressive in compi-
lation, wasting time on unnecessary recompilations and/or Table 1. Program phase, hardware patterns, and recompila-
high optimization levels. This is particularly true earlyca tion aggression.
late in program executions, where code execution variabil-
ity is high and the expectation of continued behaviour is
lower. This can also occur when programs make major phase The second column of Table 1 describes how program
changes, shifting into markedly different modes of execu- phases are heuristically determined from the underlying
tion. The kernel of our online mechanism is thus a sys- hardware event data. Changes in how lower-level patterns
tem that detects coarse grained and variable length progran@re identified in the data suggest corresponding changes in
phases and uses this information to control the relative ag-the program code, and thus phase or age. At program startup
gression of the recompilation subsystem in JikesRVM. The @ Wide variety of “execute-once” startup code is executed,
resulting improved recompilation choices improve overall and few recurring low-level patterns are found. A young
program performance. program will start to show significant recurrences of new
The existence of basic startup, core execution, and shut-Patterns as it begins to execute its kernel code. The mature
down phases are well known. Our phase identification is Phase is detected by noticing the balance tipping from dis-
based on identifyingge but further allows programs te- covery of new patterns to recurrence of old patterns, and the
juvenate as a means of allowing for the identification of rejuvenated phase by a subsequent loss of old patterns and
multiple major execution phases. These phases imply dis-introduction of new ones.

tinct patterns of control for recompilation, and are cléisdi Understanding program phase allows for heuristic con-
as follows: trol of the relative aggression of the recompilation engine

_ . cases where the future performance is not equal to the past
* Newborn: At startup a Java program tends to spend time ¢ expected execution time should be appropriately scaled

on a set of methods that perform initialization actions, The third column in Table 1 gives a summary of how age
and these are often not executed after basic setup is COMy¢facts the behaviour of the recompilation engine. A new-

plete. When considering whether past behaviouris a goodpqrn program is less likely to repeat its behaviour, and re-
predictor of future behawo_ur we can_heurlstlcally e>_<pect compilation should be more conservative. A young program
that the future execution time of a given method will be gpters into its kernel; the new code is likely to be executed
less than the paskuture < Past much more than it has been in the past, and recompilation
Young: After a period of time, the program comes into becomes aggressive. As the execution enters a mature phase
the main application or kernel code and will spend a aggression is decreased; in such a relatively stable enviro
comparatively long time on the same set of methods. ment the recompilation engine is expected to have sufficient
Methods executed at this stage are likely to be executedpast data for making good decisions. A program that enters
even more in the futurdzuture > Past a new significant kernel of execution requires again ramping

Mature: After the program works within its kernel code YP the aggressiveness of recompilation. ,

for a while, we consider the program to beature In _ The aggressman the ada_p'uve recomp|I§1t|on engine
this case, we assume the runtime profiling subsystem had$ controlled by using a scaling parameter in the estima-
gathered enough samples to support the recompilationt'on of fL_Jture execution times. We _mtrod_uce a variable
engine in determining suitable optimization levels. Here futureEstimatoand change the definition @f in Formula 1

the original estimate that future and past performance to:)

will be similar is most validFuture~ Past T; = T), « futureEstimator 2)

¢ Rejuvenated: Experience with coarse grained phase anal- Figure 6 shows a high level overview of the complete
ysis of Java programs shows some programs will have online algorithm. Each hardware pattePAT has a field
distinct, kernel-based phases, and at runtime will have occNumwhich remembers the number of occurrences. If the
more than one hot method set. When a program entersadaptive recompilation model finds a recurriBgT, such
a new hot set it thus transitions to the young phase again.that, PAT.occNumis more than one, the estimated “age”
Once saejuvenateds such, however, we have a slightly of a program Prog.agé is increased. WheiProg.ageis
more cautious estimate as to the future behaviour of the larger than a thresholgdoungThreshthe program has left
new hot setFuture > Past the newborn phase and become young. From then on, each

Rejuvenated|| More new patterns More aggressive
Invalidation of old patterns

OOPSLA paper about program phases and method recompilation 8

time there is aresh patternPAT such that the occurrence
number is less than a threshohdatureThreshthe value
of futureEstimatoris increased; otherwise its value is de-
creased. A larger value dfitureEstimatordrives the adap-

tive recompilation model to make more aggressive recompi-

lation decisions, assuming methods will run for longer than

ments, we rursooTon the class file of benchmaskvac in
SPEQvVM98 with the--app -0 options, which performs

all available optimizations on application classesEeB-
DOJBB is a variant of SPE@B2000 [48] which exe-
cutes a fixed number of transactions in multiple warehouses.
In these experiments it executes from one to eight ware-

currently estimated. Fixed upper and lower bounds protect houses with 100 000 transactions in each warehouse. For

the futureEstimatorvalue from diverging in cases of ex-

tended bursts of fresh or mature patterns. Based on earlier

experiments we limifutureEstimatotto the rang€0.9, 5.0].

Get a pattern PAT

Decrease
futureEstimator

Increase
futureEstimator

futureEstimator <
MinValue?

futureEstimator >
MaxValue?

futureEstimator :=
MinValue

futureEstimator :=
MaxValue

End

Figure 6. An overview of the algorithm used in the compu-
tation of thefutureEstimator

5. Experimental Results

Experimentally we evaluated the performance of both our
offline and online solutions. Our implementations are built
upon JikesRVM 2.3.6 with an adaptive compiler, and runs
on an Athlon 1.4GHz workstation with 1GB memory, under
Debian Linux with a 2.6.9 kernel.

Benchmarks used in this work include the industry stan-
dard SPEGvM98 suite [47], and two larger examples,
sSooT [53] and FBSEUDOIBB (PJBB). SOOT is a Java opti-

SPEQvVM98 we use the S100 input size.

For performance evaluation we measured our bench-
marks quantitatively using a baseline (original), and gsin
our offline and online strategies. Overall execution time fo
the online approach includes all overhead for phase asalysi
and low-level profiling. In the case of the offline approach
the overall execution time includes the overhead of precess
ing the recompilation trace. Full results for our benchrsark
in absolute and relative terms are shown in Table 2.

To gain greater insight into the source of improvement,
and inspired by our intuition as to potential performance
gains in introductory Figure 1, we also developed more ab-
stract, analytical measures that summarizetheuntof op-
timized code executed. Our abstract measures of optimiza-
tion quality are shown in Figure 7 and Figure 8. For space
reasons we cannot show all such results in detail, so the an-
alytical results are selected to be representative of fifierdi
ent kinds of observed behaviour.

To measure the relative proportion of code executed at
different optimization levels we developednaethod-level
speed MLS) metric that can be applied to individual meth-
ods in individual program executions. MLS is computed as
the sum of the time, measured in samples, spent at differ-
ent optimization levels, weighted by the proportion of time
at each optimization level. Each partial sum for an opti-
mization level in this calculation is scaled by an estimate
of optimization quality, namely thepeedof the code un-
der the given optimization level; JikesRVM provides fixed
estimates for these latter values. Figure 7 shows the re-
sults for a measurement of MLS for the three methods with
the largest MLS values inAck,ordered from top to bot-
tom. Thex-axis in these graphs is time, measured in sam-
ples, while they-axis is the estimated speed for different
optimization levels in JikesRVM. An upward step in the
graph corresponds to a recompilation at a higher optimiza-
tion level. The size of the area under each curve gives an
estimate of how MLS changes under different recompila-
tion strategies—greater area means greater use of optimize
code, and hence heuristically improved performance.

In Figure 8 we show a summary of the same basic
property, but summarized over the entire execution and all
methods. To simplify calculations, method contributiores a
weighted here not by actual number of runtime samples, but
by static method size. This provides a more approximate pic-
ture of behaviour, akin to a static versus dynamic analysis,
but also demonstrates the effect is robust in the face of dif-

mization framework which takes Java class files as input ferent and less precise forms of evaluation. In these figures

and applies optimizations to the bytecode. In our experi-

OOPSLA paper about program phases and method recompilation

Benchmark || Original Offline Online Benchmark Characteristics

Time(s) Time(s) | Improvement (%)| Time(s) | Improvement (%) Patterns| Optimized methodsg
compress 15.75 15.55 1.3 15.73 0.1 157.9 17.6
db 37.97 37.22 2.0 37.72 0.6 450.5 25.3
jack 22.59 20.08 11.2 19.78 125 3435 90.0
javac 11.78 10.72 9.4 11.10 5.7 193.9 36.9
jess 18.11 14.25 21.3 14.87 17.9 204.5 50.0
mpegaudio 20.24 17.81 12.1 19.79 2.3 103.6 58.9
mtrt 15.14 14.29 6.4 15.42 -1.8 58.8 36.4
raytrace 14.35 13.30 7.3 14.21 0.8 63.9 35.3
soot 303.12 278.45 8.1 291.28 3.9 2542.3 408.2
PseudoJbh| 753.95 705.90 6.4 735.62 25 7832.8 331.8

| Average| - [- | 8.5 -] 45 - - |

Table 2. Execution results, number of patterns created in the onliersion, and number of methods optimized for
SPEQvVM98, sooTand FBSEUDOIBB. Values are the arithmetic average of the middle 11 out otibS.r

the z-axis is normalized execution time, and thexis is
Method: getNextTokenFromStream
5 “weighted optimized methods”, a sum of weighted method
size of all sampled methods, where each weighted sum is
. again scaled by the appropriate optimizatgpeedfactor

35 T

. provided by JikesRVM. The interpretation of these graphs is

4.5 e
'

g 25 similar to that used for Figure 7; a higher curve means there
ig’ 2 et are more methods optimized to a higher level and the exe-
R cution speed should be faster, with the area underneath ap-
O_; orginal — | proximating relative amount and quality of optimized code
0 Opiine v executed.
0 50 100 150 200 250 300

Numb f S | . .
aber R 5.1 Offline mechanism

Method: RunTimeNfaState.Move

5 The results of our offline mechanism in absolute terms as
A B B well as relative improvement over the original version are
el given in the third and fourth columns of Table 2. The of-
sl fline version does achieve significant improvements on some
25 [benchmarks. Opess it improves execution time by 21.3%.
2 On JACK, JAVAC and MPEGAUDIO, the improvements are
B also quite large. On average, the offline version saves 8.5%
of the execution time, although the effect is not unifornr; fo
some benchmarks, such@sMPRESsandDB, there is little

to no improvement at all. We will discuss these benchmark-
Method: resolvedNewSealar specific behaviours in more detail in Section 6.

8 In the weighted optimized methods graphs, the curves for
Tt our offline implementation are shown as dashed lines. Cor-
responding with the faster execution speeds, these cur@es a
5 also the highest ones in these graphs. Interestingly, it mos
: of the benchmarks, there is only one major upwards trend. In
3t the graph forsooT, however, there are two such increasing
phases. This shows the existence of programs with multi-
ple major phases that can require large and relatively abrup
changes in identified hot method sets.

Estimated Speed

Original
° Offline - - -
Onling s

0 20 40 60 80 100 120
Number of Samples

Estimated Speed
IS

N

! Original 1
Offline - - -
Onling e

0 50 100 150 200 250 300 350 400 450 500
Number of Samples

5.2 Online mechanism

Figure 7. DynamicMethod Level Speadeasurements over
time for each of our baseline, offline and online recompila-
tion approaches. Each graph is a distinct method freox.

The execution time results for the online mechanism are
shown in the fifth and sixth columns of Table 2. For bench-
marks where the offline version shows a large improvement,

OOPSLA paper about program phases and method recompilation 10

40000

jack

35000 -
30000

Original
Offline - - -

Onling e

25000
20000

15000

10000

5000

20000

10

20

30

40

50

60

70

80

90

18000 r
16000 r
14000

Original

Offline
Online

12000
10000

8000

6000

4000

2000

60000

10

20

30

40

50

mpegaudio

60

70

80

90

50000 -

40000

Original
Offline

Onling s

30000

20000

10000

250000

200000

150000

100000

50000

0

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

10

20

30

40

50

PseudoJbb

60

70

80

90

100

Original

Offline - - -

Onling =t

10

20

30

40

50

60

70

80

90

100

Original

Offline - - -
Onling e

0

10

20

30

40

50

60

70

80

90

100

Figure 8. Weighted optimized methods$ack, JESS MPEGAUDIO, PSEUDQJBB andsooT. In each of these graphs theaxis
is normalized time and thg-axis is the “weighted method sum,” a heuristic measuremifethe amount of optimized execution
as described in Section 5.

OOPSLA paper about program phases and method recompilation 11

the online version also performs well. We obtain up to nearly
18% improvement fosesS quite close to the 21% improve-
ment found foriessoffline. On average the online version T
achieves a 4.5% improvement, about 53% of the possible
performance improvement demonstrated in the offline ver-
sion. For the 4 benchmarks that responded most positively
to the offline version, the improvement online is on average
9.6%, or 71% of the offline result.

In the weighted optimized methods graphs, the curves for
the online version are shown as dotted lines, and typicially |
between the curves for the offline and original implementa-
tions. In the graph fosooT (the bottom graph in Figure 8),
the online curve reflects the multiple phases that are more
clearly seen in the offline curve; our online system coryectl Original == Online =3 Offline £
identifies the rejuvenated phase, as we discuss in more detaiFigure 9. Normalized execution time of SPE@V98,

in Section 6.1. sooTand PsEuDOJBB with 99% confidence interval error-

Further details on performance can be seen in the be-pars for each of our three test scenarios: original, onlite a
haviour of specific methods, as shown fack in Figure 7. offline.

As with the weighted optimized method results, the offline
version r_\as the greatest_ area and provujes h|_gher opt|m|za—in most cases greatly exceeded by the benefit, and demon-
tion earlier, with the online implementation lying between

. o : strates the practical low overhead of our technique; again,
the offline and original versions. _Not(_e the bottom _gra;ah (. speedup and other experimental data includes all overhead.
solvedNewScalarshows the offline implementation opti-

mizing the method later than both the original and online
versions. This is a result of resource management in the re-

08 &

0.6

0.4

Normalized execution time

0.2

comp db jack javac jess mpeg mitrt r soot PJbb Avg

o S . 25
compilation system, prioritizing requests for relativédst
lower levels of optimization over more expensive requests ol
for longer, highly optimized compilations. - -
5.3 Variance and overhead =1 15 ¢
. ()
Figure 9 shows 99% confidence intervals for our original, £ L
offline, and online data measurements. Our evaluation is ex- 3
perimentally quite stable and deterministic, with conficken
ranges for the three variations generally showing good-sepa 05T)
ration. Note that the intervals fonck are among the largest
. ; 0
and have clear overlap; thel% performance gain forAck comp db jack javac jess mpeg mtrt t soot pjbb Avg

online as opposed to offline could be attributed to data vari-
ance and/or the intrinsic imprecision of simple optimiaati
benefit/cost estimates. We discuss accuracy and noise conFigure 10. Relative overhead in the online system com-
cerns in depth in the following section. pared with the original. Overhead comes from sources such
Overhead in profiling systems is always a major design as hardware monitoring, pattern construction, phase gredi
concern. In our case we make use of hardware counters thation, and building control events for the recompilation ecom
are sampled at every process context switch; at a few tens ofoonent.
machine cycles per read and only on the order of thousands
of context switches over a program’s lifetime this techeiqu . .
is extremely cheap. Pattern construction and phase anaIy—6' Discussion
sis provide the bulk of our actual overhead, and to mea- Initial recompilation choices affect later recompilatichoices,
sure total overhead costs we compared the original, baselin and there are many potential parameters and choices in our,
JikesRVM with an implementation of our online technique or any, recompilation design. A good understanding of po-
that computes phases as normal but does not actually changeential variation and relative performance gain is therefo
the adaptive recompilation setting&itureEstimatoy. Fig- important to making good, general selections of recompila-
ure 10 shows the computed relative overhead. On averageion strategies.
there is a 1.33% slowdown across these benchmarks due to We have chosen algorithmic parameters to include re-
our data gathering and phase analysis system. There is alsource requirements (eg use of tri-selection and dualvean
ways room for improvement, but this relatively small costis approaches), and performed extensive initial experimenta

OOPSLA paper about program phases and method recompilation 12

tion and numerical validation of the parameter space to jus- a gradually increasing curve with no obvious bursts of op-
tify our main approach; this numerical evaluation is de- timization. Our online implementation achieves an interme
scribed in [24]. Here we discuss various factors that can diate level between these two. It has a moderate sensitivity
influence our performance, and present data validating theto the hot set variation and goes through a couple of smaller
general stability and effectiveness of our design. We first steps at approximately the same points in time, rising more
consider different benchmark characteristics that aremmp quickly to the level of the offline analysis.

tant in our approach. This is followed by a detailed com- An unfortunate side effect of our optimization for de-
parison of our design with other simple optimizations to the tecting rejuvenation, or variations in the hot set is a derta
recompilation system, again showing the practicality af ou overzealousness of optimization toward the end of execu-
work and the generally good quality of the result. tion. The online curves afACK, MPEGAUDIO andS0OOTIn
Figure 8 tend to rise above even that of the offline curve by
the end of execution, indicating that optimized recomjatat
Benchmarks in our study demonstrate a wide range of re-may be being overused, recompiling and optimizing meth-
sponses to our optimization. Several benchmark-specificods that will only be used in the final fraction of program
factors can be seen to influence whether and where per-execution. We experimented with identifying a termination
formance will be realized using our techniques. Benchmark phase, but termination tends to look like any other phase
length, the stability of the hot set, as well as more general change (rejuvenation) with our current pattern analyst an
sensitivity of the program to our profiling and optimization data. Solutions based on incorporating extra, high level in
systems can all affect the relative success. formation such as knowledge of termination-specific meth-
ods may be more profitable. In practice, these sub-optimal
online decisions at termination time do not have an overly
In our benchmark suite, the SPEXV98 benchmarks finish large impact, and so we leave reducing this “tail” problem to
in a comparatively short time whilgooTand FSEUDQIBB future work.

execute for an order of magnitude or so longer, and also .

recompile many more methods than other benchmarks, ad\Ppropriateness of data source

seen in the last column of Table 2. Longer running programs It is interesting that low level events can expose high level
have an advantage in that recompilation has more data tobehaviour, even for complex, object-oriented programh wit
work with as there are more sample points. Furthermore, non-trivial control flow. We have successfully used the I-
any reduction in speed due to less optimal recompilation cache miss rate as a base event, but this does impact not only
choices can be amortized over a longer period and often awhat can be measured but also how it can be measured, and
larger hot set. For shorter programs our mechanism helpsof course other choices and event combinations are possible
the VM locate the hot set more quickly; the reduction in Although a good choice in general, for some benchmarks
overhead obtained by promoting methods more quickly to I-cache miss rate provides somewhat reduced information.
their final optimization level is also a greater benefit. This RAYTRACE andMPEGAUDIO, for instance, have a relatively
factor can be seen in the results for the longer and shortersmall instruction working set. Thus we observe only slight
running programssooTand PSEuDoJBB show an average changes in I-cache performance, and as can be seen from the
improvement of 7.3% and 3.2% using offline and online 2nd-last column in Table 2 our pattern creator finds signifi-
analyses respectively, while the other, shorter benchsnark cantly fewer patterns in these cases. This provides less inf
improve on average of 8.9% and 4.8%. mation to the recompilation engine, and thus recompilation
choices are not much better than in the original vergiav:
TRACE andMPEGAUDIO show marginally positive improve-
We observe that many programs contain a single hot set ofments, whileMTRT shows a 2% reduction. The fact that per-
methods that is more-or-less stable over the course of exeformance even in this situation is close to the original and
cution. Some benchmarks, however, do have large, distinctnot significantly degraded is evidence of the low overhead
execution phases, and show a clear hot set variatooT$ of our implementation design in general, and sample-based
our benchmarks demonstrates this quite clearly; in Figure 8 hardware monitoring specifically.

thesooTcurve of the offline version obviously has multiple Other benchmarks have instruction working sets large
stages. Each large incline corresponds to a major change irenough to produce significant misses as different code paths

6.1 Benchmark characteristics

Benchmark execution time

Hot set stability

the hot set. are exercised, allowing our online solution to identify-pat
Using our offline implementation with perfect knowledge terns easily. The performance difference resulting from th
of the future, we can detect the hot set variationreju- improved information is evident in benchmarks such as

venatedphase correctly and quickly, resulting in relatively JACK, JESS and JAVAC. Some benchmarks, however, ex-
steep slopes upward as the new hot set is optimized. Thehibit cache performance changes, but the actual hot method
original implementation, on the other hand, has no apparentset remains quite small. If a small set of methods are called
sensitivity to this change in program behaviour and shows frequently, as focoMmPRESSand DB, the original adaptive

OOPSLA paper about program phases and method recompilation 13

recompilation engine has the chance to gather enough samby values between 1:5and 3.0<; this represents the range

ples to recompile a method relatively quickly. In these sase of average increase in aggression used by our online system

the potential improvement available by reducing the defay o for benchmarks in our suite (Table 3, last row).

recompilation is small. The marginal benefit achieved by our ~ The data in Table 3 shows that there is certainly no one

offline solution can be mainly attributed to reductionsin op fixed setting that is optimal for all benchmarks; benchmarks

timization overhead due to skipping redundant intermediat respond differently, and simply increasing aggression-ove

recompilations for some methods. allis not a generally effective strategy. This is more appéar
Programs can also exhiliiias with respect to different graphically, as seen in Figure 11. Some benchmarks have a

hardware events. We previously showed, for instance, thatlarge variance in performance agureEstimatorchanges,

some programs likeessand JACK are highly “instruction and some are relatively unaffected. For all benchmarks ex-

cache sensitive”, meaning that from a processor-leveltpoin ceptMPEGAUDIO andCOMPRESS our online version is op-

of view the instruction cache performance has a large impacttimal or within variance of optimal. In comparison with sim-

on the execution time of the program [25]. On the other hand, ple approaches, our online design provides stable and good

DB and especiallyomPRESSare highly data cache biased. results overall, significantly more so than the base version

There is obviously limited room to improve performance any of the constant aggression settings.

from the code side if data usage has a dominating impact.

In these cases even the offline version only obtains a small 12
improvement. We expect that programs with large memory 115 .
requirements and hence garbage collection overhead, heavy

I/0, and so forth will also respond less well to our design, L1

as in general programs that are dominated by other costs
than code execution speed will receive reduced benefits from
adaptive code optimization techniques.

The above discussion suggests that monitoring different
or multiple hardware events may be a route to further opti-
mization. We have explored a few hybrid forms of pattern-

1.05

1

0.95

Normalized Execution Time

0.9

building based on combinations of I-cache miss rate, D- 0.85 L
cache miss rate, branch instruction counts, and brandgredi .
tion miss rates. So far, these designs have not shown useful Ofomp db jack javac jess mpeg mit 1t soot plbb
improvement above that of one based on a simple I-cache Orig —— 20X % 30X —-m-
. . . . 1.5X —--x--- 2.5X o Onling == @=:
miss rate; further exploring this space is, however, poten-
tially fruitful future work. Figure 11. Normalized execution time for benchmarks us-

6.2 Stability and comparison with simple approaches ing different recompilation optimization strategies.

Understanding which benchmarks can work well is impor-
tant, but differentiating them online may be non-trivialdaa
good recompilation system should perform reasonably well We can separate benchmarks into those that exhibit a low
over a range of benchmarks. For our adaptive system to besensitivity to recompilation decisions (less thark% vari-
useful itis also important to know that the adaptivity iseeff ance between approaches), and those that show relatively
tive. Both our online and offline strategies generally imse high variance due to such choices. The former are shown
the aggression of recompilation choices, and we must con-in Figure 12 and the latter in Figure 13.

Recompilation algorithm sensitivity

sider that similar effects could be achieved by simply mgkin The less sensitive benchmarks in Figure 12 correspond
the the JikesRVM estimator more aggressive without adap- reasonably well with our discussion of benchmark-specific
tation. behaviours that impair the effectiveness of our technique.

Testing the effects of trivial, constant increases in recom SooTand PSEUDOJBB are long-running with large hot sets,
piler aggression provides a baseline that shows both tlie var while cOMPRESSand DB contain hot sets that are easily
ability of performance of different recompilation straies) identified under all scenariosAVAC is a marginal inclusion;
and in comparison with our online approach, the actual im- like RAYTRACE it has a small working set, but falls within
pact of adapting to program phases. We evaluate several verthe threshold of insensitive benchmarks in our simple lyinar
sions of JikesRVM with no hardware monitoring or phase division.
analysis, but incorporating our scaled time estimate fdamu More sensitive benchmarks where recompilation deci-
in Formula 2 with futureEstimatorset to different fixed, sions can have a relatively large performance impact are
constant factors to increase recompiler aggression. Table shown separately in Figure 13. Adaptivity accommodates
shows the normalized overall execution time for our bench- benchmarks where greater aggression usually improves per-
marks when the future time estimate of methods is increasedformance such asess and benchmarks where greater ag-

OOPSLA paper about program phases and method recompilation 14

| futureEstimator || compress| db [jack [javac | jess | mpegaudio | mtrt | raytrace | soot | PseudoJbb]
1.5% 0.997 0.991 | 0.987 | 0.970| 0.924 0.960 1.017 0.983 0.966 0.991
2.0x 0.970 1.008 | 1.041| 0.955| 0.879 0.924 1.039 1.010 0.950 0.978
2.5x 1.018 1.022 | 1.063 | 0.975| 0.856 0.925 1.127 1.057 0.945 0.969
3.0x 1.018 1.025| 1.080 | 0.991| 0.852 0.948 1.151 1.053 0.969 0.975
online 0.999 0.993| 0.876 | 0.942 | 0.821 0.978 1.018 0.990 0.961 0.976

[onlineaverage] 3.06 | 1.98 | 2.16 | 2.40 | 2.34 | 244 [222] 199 | 135 1.09 |

Table 3. Fixed setting ofutureEstimatowversus the online version. The “online average” row showesatveragdutureEsti-
matorvalue used in the online version, weighted proportionaligrgorogram execution.

gression decreases performance, sucthag andMTRT. A
more detailed view of typical benchmark behaviour found
in our experimental data is shown in Figure 14, with the
115 upper row showing the normalized performance of bench-
marks that improve or degrade performance as an almost lin-
ear function of recompiler aggression. For benchmarks such
105 assooTandMPEGAUDIO, however, a “sweet spot” exists in
terms of overall aggression, in both cases here around 2.0—
_ : 2.5. Adaptation is not as successful overallFfBrEGAUDIO
0.95 R g — while for sooT adaptation finds a good performance level,
albeit in a context where the total performance variation is
small. Universally good performance under these condition

1.2

11

1

Normalized Execution Time

0.9

0.85 is hard to achieve; however, the online system, generally

08 ‘ ‘ ‘ ‘ does quite well in adapting to different benchmark condi-

Orig. 15X 2.0X 25X 3.0X Online tions and is clearly an overall better choice than either the
compress—— favac - PseudoJbb--s - current or other fixed aggression schemes.

Figure 12. Normalized execution time for benchmarks us-
ing different recompilation optimization strategies. $se 7. Conclusions and Future Work

benchmarks seem insensitive to strategy. For many programs, sub-optimal choices in recompilation

can result in reduced performance. We have shown how im-

provements to recompilation strategy can result in beter p

formance, and provided a design using coarse grained, vari-
12 able length phase prediction to adaptively improve recom-
pilation choices. Using offline trace data for predictionpr
vides an experimental high performance watermark for such
a technique, and functions as a useful optimization when
program executions are repeated exactly. Our fully online
implementation makes choices based on dynamically ac-
quired data, and exhibits both low overhead and good overall
performance.

Multiple factors influence performance in a recompilation
system, and to show meaningful improvement a close evalu-
ation of performance under different scenarios and with dif
ferent levels of detail is important. We have explored our op
timization in terms of execution time, and further valicthte

1.15

11

1.05

1M

0.95

Normalized Execution Time

0.9

0.85

0.8
Orig. 1.5X 2.0X 2.5X 3.0X Online

, _ our results with analytical measurements. Detailed exami-
jack —— mpegaudio----*--- raytrace - == . .
Jess == mitrt g nation of benchmark behaviour reveals that benchmarks re-

spond in different ways to the relative aggression of a re-
compilation engine, and we considered a wide variety of
benchmark-specific factors, including high level consader

tions such as overall runtime and low level influences such
as the density of hardware event data. Under these highly

Figure 13. Normalized execution time for benchmarks us-
ing different recompilation optimization strategies. $ae
benchmarks are quite sensitive to strategy.

OOPSLA paper about program phases and method recompilation 15

jess mtrt

1.2 1.2 —
1.1 1.1]
£ 1 £ 1 wm T
o9t I — = o9t 1
c il | c
S o8t} o S 08¢} 1
3 07Ff 1 3 07r 1
% <
X 06 1 X 06 1
T 05 1 5 05 1
2 04 1 S 04r 1
E 03[1 E 03F 1
S o2t 1 S o2t 1
01t 1 01t 1
0 0
Orig. 15X 2.0X 25X 3.0X Online Orig. 15X 20X 25X 3.0X Online
soot mpegaudio
1.2 1.2
1.1 1.1
g e — g ... p—
o9t 1 = o9t - 1
c c
S o8t} 1 S 08¢} 1
3 07¢f : 3 07r :
% <
X 06 1 X 06 1
T 05 1 5 05 1
% 0.4 1 % 0.4t J
E 03[1 E 03F 1
S o2t 1 S o2t 1
01t 1 01t 1
0 0
Orig. 15X 2.0X 25X 3.0X Online Orig. 15X 20X 25X 3.0X Online

Figure 14. Typical behaviour of benchmarks in response to differecmepilation strategies. More aggressive recompilation
is in general good for benchmarks likess(upper left), bad for others like TRT (upper right), while some such a®oTand
MPEGAUDIO have an intermediate sweet spot in terms of overall recan@ggression. In the first three cases the online system
adapts well; fomPEGAUDIO the online performance is improved over the baseline bus doeachieve optimal performance.

variable and “noisy” conditions our adaptive online system cheaply gathered, is also obviously of value. Predicting ma

achieves a significantly improved performance. jor phase changes may be useful for scheduling garbage
There exist a large number of possible extensions to this collection, heap data reorganization or any other design fo

work. The success of our approach, like most adaptive on-larger scale adaptive execution. Additional or differestdh

line systems, depends on the extent of variability in run- ware event data may be useful for more “data-centric” ap-

time execution data. We have expended a great deal of ef-plications, and part of our current investigations incltioke

fort to understand and experimentally validate potentiall use of multiple and hybrid hardware event sources.

critical factors, ensuring our approach is a generally sbbu

optimization. Further understanding and detection of henc

mark characteristics may improve our design, and could alsoReferences

be used to help select benchmark-specific responses by the [1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith

adaptive optimization systerRrofile repositoriesaggregat- T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and
ing profile data from multiple executions may be a useful M. Mergen. Implementing Jalapefio in Java. O®PSLA
way of moving online performance closer to that of offline '99: Proceedings of the 14th ACM SIGPLAN conference
performance [6]. Mixing profile data from multiple runs or on Object-oriented programming, systems, languages, and
using offline/online hybrid data might also help with theil'ta applications pages 314-324, Oct. 1999.
problem” of predicting the termination phase of a program. [2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Coc-
We intentionally exploit coarse grained phase informa- chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
tion to allow complex optimizations time to act and improve McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar,
performance. Startup phases are well-known, but the use ~ and M. Trapp. The Jikes Research Virtual Machine project:
of high level and variable length phase information, when Building an open-source research communigM Systems

Journal 44(2):399-417, Apr. 2005.

OOPSLA paper about program phases and method recompilation 16

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

[4

—_

5

—_

[6

—_

(7]

8

—_

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
where have all the cycles goné®M Trans. Comput. Syst.
15(4):357-390, Nov. 1997.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapefio JVMCM SIGPLAN
Notices 35(10):47-65, 2000.

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-
directed optimization of Java. IROPSLA '02: Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applicatipages
111-129, New York, NY, USA, 2002. ACM Press.

M. Arnold, A. Welc, and V. T. Rajan. Improving virtual
machine performance using a cross-run profile repository.
In OOPSLA '05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming,
systems, languages, and applicatiopages 297-311, New
York, NY, USA, 2005. ACM Press.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. RhDI '00:
Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementatipages
1-12, New York, NY, USA, 2000. ACM Press.

R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas. Memory hierarchy reconfiguration for
energy and performance in general purpose architectumnes. |
MICRO 33:the 33rd Annual Intl. Sym. on Microarchitecture
pages 245-257, Dec. 2000.

R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei
W. Hwu. Vacuum packing: extracting hardware-detected
program phases for post-link optimization. MiCRO 35:
Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecturgpages 233-244, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

R. Berrendorf, H. Ziegler, and B. Mohr. PCL-the perfemce
counter libraryhttp://www.fz-juelich.de/zam/PCL/.

S. Brown, J. Dongarra, N. Garner, K. London, and P. Mucci
PAPI. http://icl.cs.utk.edu/papi.

D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-1997-1342, 1997.

M. Burtscher. An improved index function for (D)FCM
predictors. Computer Architecture New80(3):19-24, June
2002.

B. Calder, P. Feller, and A. Eustace. Value profiling and
optimization, 1999.

B. Calder, C. Krintz, S. John, and T. Austin. Cache-comss
data placementSIGPLAN Not.33(11):139-149, 1998.

T. M. Chilimbi and M. Hirzel. Dynamic hot data stream
prefetching for general-purpose programs. PinDI '02:
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementatipages
199-209, New York, NY, USA, 2002. ACM Press.

[17] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth.

OOPSLA paper about program phases and method recompilation

The open runtime platform: a flexible high-performance
managed runtime environment: Research artic@sncurr.
Comput. : Pract. Experl7(5-6):617—637, 2005.

[18] A. S. Dhodapkar and J. E. Smith. Managing multi-
configuration hardware via dynamic working set analysis.
In ISCA ’'02: Proceedings of the 29th annual international
symposium on Computer architectupages 233-244. |IEEE
Computer Society, 2002.

[19] A. S. Dhodapkar and J. E. Smith. Comparing program phase
detection techniques. IRroceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture
page 217. IEEE Computer Society, 2003.

[20] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Charact
izing and predicting program behavior and its variability.
PACT '03: Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniqupage
220. IEEE Computer Society, Sep. 2003.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariantScience of
Computer Programming2006.

[22] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosseher
Method-level phase behavior in Java workloadsO@PSLA
'04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems,
languages, and applicationpages 270-287, Oct. 2004.

[23] B. Goeman, H. Vandierendonck, and K. de Bosschere.
Differential FCM: Increasing value prediction accuracy by
improving table usage efficiency. Proceedings of the 7th
International Symposium on High-Performance Computer
Architecture (HPCA) pages 207-216. IEEE Computer
Society, Jan. 2001.

[24] D. Gu and C. Verbrugge. Using hardware data to detect
repetitive program behavior. Technical Report SABLE-TR-
2007-2, Sable Research Group, School of Computer Science,
McGill University, Montréal, Québec, Canada, March 2007

[25] D. Gu, C. Verbrugge, and E. Gagnon. Relative factors in
performance analysis of Java virtual machines. VEBE
'06: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environmeridew York,
NY, USA, June 2006. ACM Press.

[26] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase shift
detection: A problem classification. Technical Report IBM
Research Report RC-22887, IBM T. J. Watson, August 2003.

[27] S. Hu, R. Bhargava, and L. K. John. The role of return galu
prediction in exploiting speculative method-level pagkdim.
JILP, 5:1-21, Nov. 2003.

[28] M. C. Huang, J. Renau, and J. Torrellas. Positional tdam
of processors: application to energy reductionl3GA '03:
Proceedings of the 30th annual international symposium on
Computer architecturgpages 157-168, New York, NY, USA,
2003. ACM Press.

[29] IBM. Pmapi. http://www.alphaworks.ibm.com/tech/
pmapi.

[30] Intel. VTune performance analyzelittp://wuw.intel.

17

com/software/products/vtune/.

[31] H.-S. Kim and J. E. Smith. Dynamic software trace
caching. Inthe 30th International Symposium on Computer
Architecture (ISCA 20032003.

[32] T. Kistler and M. Franz. Continuous program optiminati
A case studyACM Trans. Program. Lang. Sys25(4):500—
548, 2003.

[33] N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead
program monitoring and profiling. IRASTE '05: The 6th
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineeringages 28-34, New York,
NY, USA, 2005. ACM Press.

[34] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. &ald
Motivation for variable length intervals to find hierarcaic
phase behavior. 12005 IEEE International Symposium on

SIGPLAN Not.39(11):165-176, 2004.

[45] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simiolat
points in applications. IFPACT '01: Proceedings of the
2001 International Conference on Parallel Architecturesla
Compilation Techniquepages 3-14, Washington, DC, USA,
2001. IEEE Computer Society.

[46] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. InISCA '03: Proceedings of the 30th annual
international symposium on Computer architeciysages
336-349, 2003.

[47] Standard Performance Evaluation Corporation. SP&G#
benchmarkshttp://www.spec.org/osg/jvm98.

[48] Standard Performance Evaluation Corporation. SPEZIJBO.
http://www.spec.org/osg/jbb2000, 2000.

Performance Analysis of Systems and Software (ISPASS'05) 1491 M. M. Strout, L. Carter, and J. Ferrante. Compile-time

March 2005.

[35] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. €alde
The strong correlation between code signatures and perfor-
mance. InISPASS '05: Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software page 220. IEEE Computer Society, March 2005.

[36] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification Addison-Wesley, second edition, 1999.

[37] P. Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V. Raja
Online phase detection algorithms.@&O '06: Proceedings
of the international symposium on Code generation and
optimization Washington, DC, USA, March 2006. IEEE
Computer Society.

[38] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware r
mote profiling. INCGO '05: Proceedings of the international
symposium on Code generation and optimizatgages 191—
202, Washington, DC, USA, 2005. IEEE Computer Society.

[39] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of
speculative thread-level parallelism. BACT '99 pages
303-313. IEEE, 1999.

[40] M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot
server compiler. InJava Virtual Machine Research and
Technology Symposiumpages 1-12, 2001.

[41] C. J. F. Pickett and C. Verbrugge. Return value preaiicti
in a Java virtual machine. IRroceedings of the 2nd Value-
Prediction and Value-Based Optimization Workshop (VEBW?2)
pages 40-47, Oct. 2004.

R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong,
and W.-F. Wong. Compiler orchestrated prefetching via
speculation and predication. ASPLOS-XI: Proceedings of
the 11th international conference on Architectural sugpor
for programming languages and operating systepages
189-198, Oct. 2004.

F. Schneider and T. R. Gross. Using platform-specifiéque
mance counters for dynamic compilation. Rroceedings of
the 18th International Workshop on Languages and Compil-
ers for Parallel Computing (LCPC’05)0ctober 2005.

[44] X. Shen, Y. Zhong, and C. Ding. Locality phase prediatio

[42]

[43]

OOPSLA paper about program phases and method recompilation

composition of run-time data and iteration reorderings.
SIGPLAN Not.38(5):91-102, 2003.

[50] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. A dynamic optimization framework for a
Java just-in-time compiler. IOOPSLA '01: Proceedings
of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applicatipages
180-195, New York, NY, USA, 2001. ACM Press.

[51] Sun Microsystems, Inc. The Java Virtual Machine Tools
Interface. http://java.sun.com/j2se/1.5.0/docs/
guide/jvmti/.

[52] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwa
D. Grove, and M. Hind. Using hardware performance
monitors to understand the behavior of Java applications.
In VM'04:Proceedings of the 3rd Virtual Machine Research
and Technology SymposiuiMay 2004.

[53] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In CASCON '99: Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative regearc
page 13. IBM Press, 1999.

[54] J. Whaley. Partial method compilation using dynamiafibe
information. INnOOPSLA '01: Proceedings of the 16th
ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applicatioppages 166-179, New
York, NY, USA, 2001. ACM Press.

[55] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accu
rate, efficient, and adaptive calling context profiling.PbDI
'06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementatioages
263-271, New York, NY, USA, 2006. ACM Press.

18

