Uses of the Soot Framework

Laurie Hendren
hendren@cs.mcgill.ca

June 30, 2006

Introduction

This document briefly outlines known uses of the Soot analysis and transformation framework
(www.sable.mcgill.ca/soot). This is not an exhaustive list, but has been compiled via documents
available from the web and from feedback provided by Soot users. More additions to this list would
be very welcome.

Please contact Laurie Hendren at hendren@cs.mcgill.ca with a brief description of your use
of Soot, along with any relevant URLs and paper references. Updates to existing courses/projects
on the list may also be sent to hendren@cs.mcgill.ca.

Graduate Courses and Projects

Soot can be used in various ways for graduate courses and graduate projects. It has been used exten-
sively in the Optimizing Compilers course at McGill both for assignments on program analysis and
instrumentation, and as the basis of many individual course projects (http://www.sable.mcgill.ca/-
“hendren/621 ). Several of those projects have developed into interesting additions to Soot.

Many course instructors at other institutions have also adopted the use of Soot for course
assignments and/or course projects. Soot has been used for advanced compiler courses and also for
courses on analysis tools for software engineering.

These uses include the following:

198:515 - Programming Languages and Compilers I, Barbara G. Ryder, Rutgers University.
http://www.cs.rutgers.edu/ ryder/515/£03/

CMPS 551 (course project)
http://www.cacs.louisiana.edu/ euk4141/report.pdf

CSE 501 - Implementation of Programming Languages, University of Washington, Craig
Chambers.

CMPUT 680 - Compiler Design and Optimization, University of Alberta, Jose Nelson Amaral.

WwWww.cs.ualberta.ca/ amaral/courses/680/

CS 8803H - Program Analysis and Testing, Mary Jean Harrold, Georgia Tech.
www.cc.gatech.edu/ harrold/8803/


http://www.sable.mcgill.ca/~hendren/621
http://www.sable.mcgill.ca/~hendren/621
http://www.cs.rutgers.edu/~ryder/515/f03/
http://www.cacs.louisiana.edu/~euk4141/report.pdf
http://www.cs.ualberta.ca/~amaral/courses/680/
http://www.cc.gatech.edu/~harrold/8803/

o CS577 - Compiler Construction, Andrew Tolmach, Portland State University.

e Proposed Projects, Paul Kelly, Imperial College London.
www.doc.ic.ac.uk/"phjk/StudentProjects/CollectedProjectIdeas2001-2002.html

e CSCI-6967 - Program Analysis for Software Engineering, Ana Milanova, RPI.

www.cs.rpi.edu/ "milanova/csci6967

o CIS 788.A12: Analysis and Testing of Object-Oriented Software, Nasko Rountev, Ohio State

www.cse.ohio-state.edu/ "rountev/788/

e Principles of Software Development, Gregory Kapfthammer, Allengheny College.
cs.allegheny.edu/ gkapfham/teach/cs290/

e CS61/4 - Theory and Construction of Compilers, Joel Jones, University of Alabama.
http://al.cs.ua.edu/cs614/

e Proposed undergraduate projects, David Lacey, University of Warwick
www.dcs.warwick.ac.uk/people/academic/David.Lacey/projects.html

e ViDoC - Visuelles Design optimierender Compiler, Bernhard Steffen and Oliver Ruthing,
University of Dortmund, Germany.

1s5-www.cs.uni-dortmund.de/teaching/ViDoC/pg-antrag0304.pdf

e Translators II (CIS 801) , Matthew Dwyer and John Hatcliff, Kansas State University.
http://www.cis.ksu.edu/ dwyer/courses/801/

e CS762 Compiler Construction II, Amie Souter, Drexel University
http://www.cs.drexel.edu/ souter/cs762/project.html

e KECEN 621 Digital Circuits, Mike Wirthlin, Brigham Young University
http://wuw.ee.byu.edu/ee/class/ee625/

Research Projects

Soot has been used in a wide variety of research projects and also used for the development of
other open source projects. The following list gives some of these projects which include work in
traditional compiler analyses, analyses for software engineering, analysis for distributed programs
and software verification.

e The Ptolemy project, developed at Berkeley, is a framework for component based design
in Java. Particular concentration is on block-diagram languages, with components specified
using Java APIs. The Ptolemy project uses Soot to transform these highly generic compo-
nent specifications into more specialized ones. This allows efficient simulation, and someday,
embedded hardware and software implementations.

http://ptolemy.eecs.berkeley.edu


http://www.doc.ic.ac.uk/~phjk/StudentProjects/CollectedProjectIdeas2001-2002.html
http://www.cs.rpi.edu/~milanova/csci6967
http://www.cse.ohio-state.edu/~rountev/788/
http://cs.allegheny.edu/~gkapfham/cs290/
http://a1.cs.ua.edu/cs614/
http://www.dcs.warwick.ac.uk/people/academic/David.Lacey/projects.html
http://ls5-www.cs.uni-dortmund.de/teaching/ViDoC/pg-antrag0304.pdf
http://www.cis.ksu.edu/~dwyer/courses/801/
http://www.cs.drexel.edu/~souter/cs762/project.html
http://www.ee.byu.edu/ee/class/ee625/
http://ptolemy.eecs.berkeley.edu

The Aristotle group, Georgia Tech, uses Soot to implement DUSC, a tool to perforam dynamic
updates of classes.

http://www.cc.gatech.edu/aristotle/Publications/index.html#icsm02_dusc

Bandera was one of the first large projects to use Soot and has been developed for program
verification. The goal of the Bandera project is to integrate existing programming language
processing techniques with newly developed techniques to provide automated support for the
extraction of safe, compact, finite-state models that are suitable for verification from Java
source code. The Bandera toolset is designed to be an open architecture in which a variety
of analysis and transformation components may be incorporated.

http://bandera.projects.cis.ksu.edu/

Recently the Santos Laboratory at Kansas State has started the Indus project for a collection
of program analyses and transformations to adapt Java programs. These tools are based on
Jimple and the Soot framework.

http://indus.projects.cis.ksu.edu/

The Canvas Project (Component ANnotation, Verification And Stuff) aims to allow the
component designer to specify component conformance constraints in a natural (yet still
formal) way and to provide automated certification tools to determine whether the client
satisfies the component’s conformance constraints.

http://www.research.ibm.com/menage/canvas/

Archie Cobbs has developed an opensource Java virtual machine based on Soot. His project,
jevm, is a JVM that converts class files to C source and compiles them with GCC Opensource
software.

http://jcvm.sourceforge.net/

At the University of Maryland, College Park, Ankush Varma and Shuvra S. Bhattacharyya
have been using Soot to develop a Java-to-C compiler, and its integration with the Java-based
Ptolemy II design environment. The overall objective is to translate dataflow-based models
of signal processing systems into efficient C code for embedded processors.

Mooly Sagiv’s group from Tel Aviv have used Soot in order to build two Java-to-TVLA
translators. Both translators take as input Java class files and a set of translation rules,
and output a set of TVP files, which form the input to TVLA. The difference between the
translators is technical and regards the way translation rules are specified.

The first translator, JFE, developed by Alex Warshavsky was used in the CANVAS project (a
project of IBM Watson joint with TAU), which is aimed at verification of certain properties
of components, in particular, verifying the absence of concurrent modification of iterators. A
paper ”Deriving specialized program analyses for certifying component-client conformance”
by G. Ramalingam, Alex Warshavsky, John Field, Deepak Goyal, Mooly Sagiv, appeared in
PLDI’02. The second translator, J2TVLA, developed by Roman Manevich is currently used
to translate JavaCard programs to TVLA in a project joint with Giesecke and Devrient.


http://www.cc.gatech.edu/aristotle/Publications/index.html#icsm02_dusc
http://bandera.projects.cis.ksu.edu/
http://indus.projects.cis.ksu.edu/
http://www.research.ibm.com/menage/canvas/
http://jcvm.sourceforge.net/

e Michael I. Schwartzbach, Anders Mller, Christian Kirkegaard and Aske Simon Christensen at
the Univeristy of Aarhus in Denmark have used Soot in three projects. Two of these are the
JWIG project (http://www.jwig.org/) and the Xact project (http://www.brics.dk/Xact/),
where Soot is used as a frontend in the program analyses. Both of these analyses are concerned
with static checking of the validity of dynamically generated XML values. The third project
is an analysis for string values (http://www.brics.dk/JSA/). The output of this analysis has
the form of a mapping from Soot Values of type String, String array (of arbitrary dimension)
or StringBuffer into finite automata, such that the language of the automaton includes all
possible runtime values of the given Soot Value.

http://wuw.jwig.org
http://www.brics.dk/Xact/
http://www.brics.dk/JSA/

e Barbara Ryders’s PROLANGS research group at Rutgers University has used Soot for various
context-sensitive and context-sensitive points-to analyses, implemented as annotated inclusion
constraints that are solved by a specialized version of the BANE constraint solver from UC
Berkeley (OOPSLA’01, ISSTA’02). SOOT has also provided the framework used for program

fragment analysis applied to Java class analysis of incomplete programs (ICSE’03).

Recently, SOOT has provided the framework used in exception-catch analysis of Java pro-
grams. First, this analysis calculates the ’def-uses’ of exceptions due to failed operating system
resource requests from a Java program. Second, the analysis instruments the Java program
(again using SOOT) so that a run-time fault injection program can be called to simulate the
exception and then coverage of the calculated def-uses can be measured. (ISSTA’04)

http://www.prolangs.rutgers.edu

e Eric Bodden led a third year group project at the University of Kent at Canterbury to develop
a static analyser for Java code. The user can input sourcecode or class files / jar-archives on
which then an analysis will be performed using SOOT. Then the user can query the system
e.g. for getting all callers of a specific method. Results are shown using an open source graph
display package. This project was then further developed into an opensource project.

http://bodden.de/projects/janalyzer/

e Richard Stahl, at IMEC vzw in Belgium, has used Soot in project on task-level parallelism
extraction and optimisation for embedded heterogeneous systems. SOOT is used for analysis
of Java applications, especially call-graphs, control- and data-dependence. It is also used for
instrumentation of the program with profiler-specific code. Publications include:

— R.Stahl et al.: Performance Analysis for Identification of (Sub)task-Level Parallelism in
Java, Proceedings of SCOPES’03, Vienna, Austria, 2003

— R.Stahl et al.: High-Level Data-Access Analysis for Characterisation of (Sub)task-Level
Parallelism in Java, Proceedings of HIPS’04, Santa Fe, USA, 2004

— R. Stahl, F. Catthoor, R. Lauwereins and D. Verkest: Design-Time Data-Access Analysis
for Parallel Java Programs with Shared-Memory Communication Model, Proceedings of
EUROPAR’04, Pisa, Italy


http://www.jwig.org
http://www.brics.dk/Xact/
http://www.brics.dk/JSA/
http://www.prolangs.rutgers.edu
http://bodden.de/projects/janalyzer/

e Alan Donovan, Adam Kiezun, Matthew Tschantz and Michael D. Ernst, MIT, have used Soot
in their Jiggetai project, which aims to automate the translation of existing Java to Java 1.5,
inferring instantiations of generic types to exploit the new type system.

Their analysis combines a whole-program (or "most of program”) pointer analysis at the
bytecode level, using SOOT’s jimple IR, and a modular source-level type constraint solving
component.

http://pag.csail.mit.edu/jiggetai/

e Gregory Kapfhammer and Mary Lou Soffa, University of Pittsburgh, have used Soot in their
research on a family of test adequacy criteria for database-driven applications. Their research
on testing database-centric applications resulted in the publication of the paper ” A Family
of Test Adequacy Criteria for Database-Driven Applications” at ACM SIGSOFT ESEC/FSE

2003. This paper was selected to win the ACM SIGSOFT Distinguished paper award. All of
their testing and analysis tools rely upon Soot.

http://cs.allegheny.edu/ gkapfham/research/diatoms/

Gregory Kapfhammer has also authored a chapter on ”Software Testing” chapter in the CRC
Press Computer Science Handbook where he specifically mentions the Soot program analysis
framework in his discussion of ”Program Building Blocks”.

e Walkinshaw, Roper and Wood, from Strathclyde University in Glasgow have developed a new
intermediate representation, the Java System Dependence Graph (JSysDG), based on Soot.
www.cis.strath.ac.uk/ " nw/JSysDG.ppt
N. Walkinshaw, M. Roper, and M. Wood. The Java System Dependence Graph. In SCAM,
2008.

e Another use of Soot for verification comes from Lars-Ake Fredlunk of the Swedish Institute
of Computer Science, Sweden. His work is in guaranteeing correctness properties of a Java
Card applet.

e Gould, Su and Devanbu from the University of California, Davis, have used Soot to develop
their JDBC Checker, a static analysis tool for SQL/JDBC applications.
csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630697 . pdf

e Boulifa and Madelaine of the Oasis Team from INRIA have used Soot for model generation
for distributed Java programs.
www-sop.inria.fr/oasis/Vercors/slides/Fidji03.ppt

e Cherem and Rugina from Cornell University have used Soot for region analysis and transfor-
mation for Java programs.
www.cs.cornell.edu/ siggi/papers/ismmO4.pdf

They have also used Soot for developing techniques to transform Java programs by adding
free statements to safely reclaim memory.

www.cs.cornell.edu/"siggi/papers/ismm06.pdf


http://pag.csail.mit.edu/jiggetai/
http://cs.allegheny.edu/~gkapfham/research/diatoms/
http://www.cis.strath.ac.uk/~nw/JSysDG.ppt
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630697.pdf
http://www-sop.inria.fr/oasis/Vercors/slides/Fidji03.ppt
http://www.cs.cornell.edu/~siggi/papers/ismm04.pdf
http://www.cs.cornell.edu/~siggi/papers/ismm06.pdf

A research group at Polytechnic University has developed a design obfuscator for Java based
on Soot.

isis.poly.edu/projects/obfuscator/

Patrick Cousot and and Radhia Cousot have used Soot in building a prototype for an abstract
interpretation-bases framework for software watermarking (POPL 2004).

Gagan Agrawal and Liang Guo, University of Delaware, used Soot to experiment with explic-
itly context-sensitive program slicing (PASTE 2001).

Qi Su and Gagan Agarwal, University of Deleware, have used Soot for research on efficient
and accurate interprocedural program slicing through simultaneous call graph analysis.
http://www.cis.udel.edu/"su/research.html

Anatas Rountev, Scott Kagan and Michael Gibas from Ohio State University have used Soot
to build a tool to support their research for static and dynamic call graphs for Java.
www.cse.ohio-state.edu/ rountev/pubs/issta04.pdf

Ciaran Bryce and Chrislain Razafimahefa from the University of Geneva have used Soot in
their implementation of Safe Object Sharing.

Jelte Janses from Radboud University Nijmegen in the Netherlands has used Soot to develop
a tool for slicing Midlets.

www.student.kun.nl/j.r.p. jansen/sec/slicing midlets.pdf

Dave Clark (Ultrecht University, The Netherlands), Michael Richmond (Purdue) and James
Noble (Victoria University of Wellington, New Zealand) have developed techniques for stati-

cally determining component integrity in Enterprise JavaBeans based on the Soot infrastruc-
ture.

www.cs.uu.nl/"dave/papers/Beans.pdf

Andreas Martens (Imperial College, UK) used Soot in his M.Eng project on the optimization
of Java Threads.

www.doc.ic.ac.uk/"ajf/Teaching/ Projects/Distinguished02/AndreasMartens.ps
Douglas J Brear, Thibaut Weise, Tim Wiffen, Kwok Cheung Yeung, Sarah A M Bennett and

Paul H J Kelly, Imperial College London, have used Soot to support the fragmentation process
in their work on search strategies for Java bottleneck location by dynamic instrumentation.

http://citeseer.ist.psu.edu/581663.html
Roman Manevich (Tel Aviv University), Mooly Sagiv (Tel Aviv University), G. Ramalingam

(IBM Watson) and John Field (IBM Watson) have used Soot in the front-end processing in
their work for three projects.

— Verifying Safety Properties Using Separation and Heterogeneous Abstractions, Yahav E.
and Ramalingam G. PLDI 2004 (joint work of TAU and IBM Watson)


http://isis.poly.edu/projects/obfuscator/
http://www.cis.udel.edu/~su/research.html
http://www.cse.ohio-state.edu/~rountev/pubs/issta04.pdf
http://www.student.kun.nl/j.r.p.jansen/sec/slicing_midlets.pdf
http://www.cs.uu.nl/~dave/papers/Beans.pdf 
http://www.doc.ic.ac.uk/~ajf/Teaching/ Projects/Distinguished02/AndreasMartens.ps 
http://citeseer.ist.psu.edu/581663.html

— Establishing Local Temporal Heap Safety Properties with Application to Compile-Time
Memory Management, Shaham R., Yahav E., Kolodner E.K., and Sagiv M., SAS 2003
(join work of TAU and IBM Haifa Research Lab)

— Partially disjunction heap abstraction. (SAS 2004)
www.math.tau.ac.il/ “rumster/sas04.ps

Dong Zhou, Yuan Chen, Greg Eisenhauer and Karsten Schwan, Georia Institute of Technol-
ogy, have used Soot to implement the extraction algorithm in their work on active brokers
and their runtime deployment.

http://www.cc.gatech.edu/systems/papers/schwan/Zhou01AB.pdf

Joel Jones and Randy Smith, University of Alabama, used the points-to analysis for Soot in
their work on Automated Auditing of Design Principle Adherence.

al.cs.ua.edu/” jones/papers/000ACMSE2003v3.pdf

Polyvios Pratikakis, Jaime Spacco and Mike Hicks, University of Maryland, modified the

points-to analysis in Soot in their work on transparent proxies for Java futures. (OOPSLA
2004)

www.cs.umd.edu/users/mwh/papers/pratikakisO4transparent.htmlransparent-proxies.pdf
Davide Balzarotti and Mattia Monga, Dip. Informatica e Comunicazione, Milano, have used

Soot to perform the analysis phase of their work on Using Program Slicing to Analyze Aspect
Oriented Composition. (FOAL 2004)

http://citeseer.ist.psu.edu/633907.html

Xiaotong Zhuang and Santosh Pande, Georgia Tech, have used Soot to create the CFGs used
in their work on compiler scheduling of mobile agents.
http://www.cc.gatech.edu/ " santosh/papers/icdcs2003.pdf

Pierre-Luc Brunelle (Ecole Polytechnique, Montreal), Ettore Merlo (Ecole Polytechnique,

Montreal) and Giuliano Antoniol (University of Sannio, Italy) have used Soot to investiage
different Java Type Analyses.

http://alpha.rcost.unisannio.it/antoniol/publications/papers/issreO3vta.pdf

Scott Hemmert, Justin L. Tripp, Brad L. Hutchings and Preston A. Jackson, Birgham Young
University, have used Soot to perform bytecode reading for their low-level debugger for the
Sea Cucumber Synthesizing Compiler.

http://csdl.computer.org/comp/proceedings/fccm/2003/1979/00/19790228abs .htm
Suhabe Bugrara and Alex Salcianu, MIT, have used Soot in a project aimed at analyzing the

interactions between different aspects in a program. This work is presented in FSE’04, 7 A
Classification System and Analysis for Aspect-Oriented Programs”.

Joh Froelich and Paul Dourish, University of California, Irvine, have used Soot to generate
call-graph information in their Augur research project. They combine call-graph information


http://www.math.tau.ac.il/~rumster/sas04.ps
http://www.cc.gatech.edu/systems/papers/schwan/Zhou01AB.pdf
http://a1.cs.ua.edu/~jones/papers/OOOACMSE2003v3.pdf
http://www.cs.umd.edu/users/mwh/papers/pratikakis04transparent.htmlransparent-proxies.pdf
http://citeseer.ist.psu.edu/633907.html
http://www.cc.gatech.edu/~santosh/papers/icdcs2003.pdf
http://alpha.rcost.unisannio.it/antoniol/publications/papers/issre03vta.pdf
http://csdl.computer.org/comp/proceedings/fccm/2003/1979/00/19790228abs.htm

with version control meta-data of the source code to analyze social structures/dependencies
in the source code.

http://drzaius.ics.uci.edu/~ jfroehli/augur

Chris Pickett (McGill University), along with Clark Verbrugge (McGill) and Etienne Gagnon
(UQAM) are working on speculative multithreading and return value prediction in SableVM,
a Java Virtual Machine. He has extended Soot to analyse features of Java programs relevant
to this work and convey the results to SableVM using Soot’s attribute generation framework.
(http://www.sablevm.org)

Robert Mittermayr, Technical University of Vienna, is using Soot for his master’s thesis
work on the topic ”"statical analysis of multi-threaded java-programs”. He is using the CFG
and the Dominator-Tree to build the DJ-Graph. He has modified BlockGraph because he
needs to have a new Basic Block after a method call from and to a Thread. And with all
the DJ-Graphs from the methods he build a TDJG (Thread-DJ-Graph), thus representing
the whole program in one DJ-Graph. With this data structure he performs static analysis
to find deadlocks and busy waiting problems in multithreaded java programs. For this he
implemented a elimination based data flow framework[Sreedhar 95 and 98].


http://drzaius.ics.uci.edu/~jfroehli/augur

