
An Alternative Use of AOP to Facilitate Program Understanding

Jeff Ditullio Chandra Krintz Lingli Zhang
Computer Science Department

University of California, Santa Barbara
{jditu,ckrintz,lingli z}@cs.ucsb.edu

Abstract
With this paper, we present a new way of employing Aspect-
oriented techniques to facilitate source code understanding by pro-
grammers. AOP is commonly used to add functionality to programs
at well-defined points in the code and to separate out cross-cutting
concerns. We use AOP to identify opportunities to hide unrelated
code regions from view for software that embeds cross-cutting con-
cerns.

To enable this, we define new extensions to AspectJ in the form
of pointcuts for conditional branch instructions that we refine with
string names of variables and fields used in the conditional ex-
pression. We define a new declare action that makes use of these
pointcuts to mark bytecode instructions. We extend the Eclipse IDE
with a plugin that consumes these bytecode markers, identifies their
source equivalent, and hides the corresponding code blocks. Our
system automatically generates the necessary aspects that enable
AOP-guided folding, using three different mechanisms: a database
of commonly used names, profile data that identifies frequently and
infrequently executed code bodies, and domain-specific informa-
tion. We show using examples and empirical data that our system
reduces the number of irrelevant source lines that a user must view
when investigating Java source packages via a visualization sys-
tem.

1. Introduction
The popularity of and support for open source technologies have
lead to the emergence of an increasingly large number of available
software systems. Such systems, include virtual execution systems
(e.g., runtimes, operating systems), integrated development envi-
ronments, web servers, games, email clients, and others. However,
due to the complexity of these systems, it is difficult for those that
want to extend them to understand the intricacies of the functional-
ity without a significant learning curve. This is especially true, for
students in a University setting in which open source software tools
are studied and extended as part of course-work [15, 18, 19]. Such
systems offer a tremendous opportunity for a students’ education,
experience, and exposure to real-world infrastructures. However,
to enable this, we require tools that reduce the learning curve for
understanding and modifying these software systems. Such tools
increasingly play a key role in the implementation of modern pro-
gramming languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

One such technique for improving programmer understanding
of software, that has gained recent popularity, is aspect-oriented
programming (AOP) [14]. With AOP, programmers disentangle
cross-cutting concerns by specifying them as a separate abstrac-
tion called an aspect. Automatic aspect-aware tools then weave
the aspect into a program at the appropriate points in the code.
For example, programmers commonly insert code for debugging,
collecting timing or state data, or to assert certain conditions, into
methods. Using AOP, the debugging, logging, and assertion code
is implemented within individual aspects. The programmer spec-
ifies the points in the code at which each aspect should be in-
serted. When the programmer builds the program, a weaving tool
performs the appropriate insertions. AOP enables programmers to
write truly modular code in which the modules implement a single,
self-contained functionality. This modularization promotes code
understanding by programmers learning the software since the al-
gorithms and functionality implemented by methods is unobscured.

One limitation of AOP however, is that it aids programmers
in the development of new software; it does not help to improve
existing software, unless that software is rewritten to use aspects.
Unfortunately, most software contains unrelated, nonessential, and
cross-cutting code within method bodies, that impede a new user’s
ability to understand what the software is doing. Figure 1 shows and
example of this type of programming style from an snippet of code
taken from a source file that is part of the Jikes Research Virtual
Machine (JikesRVM) [2], an open-source JVM that is written in
Java. The instruction in the dotted box is the only line of source
code that implements the method’s functionality; all other code
blocks are cross-cutting concerns.

To address this limitation, we extend AOP for Java programs for
use in a non-traditional way. In particular, we use AOP to identify
points in the source code that are not pertinent to the underlying al-
gorithm of a method – and remove them from view. To enable this,
we extend AOP with new pointcuts that identify conditional branch
bytecode instructions. Our implementation refines these pointcuts
by matching arbitrary strings, such as those used for variables and
methods, against those used in the conditional expression. In ad-
dition, we implement AOP actions that use of these pointcuts to
place markers at (i.e., before, after, and around) each instruction
identified.

We then use this AOP extension within the Eclipse Integrated
Development Environment (IDE) framework to hide unrelated code
from view. Our Eclipse extensions consume the markers from a
bytecode aspect and uses them to fold the source code out of a
user’s view. Our folding technique creates a new perspective of the
code without changing the semantics of the program. This semantic
retention is key to our approach since it enables novice users of
software to reap the benefits of AOP with little effort. Given the
JikesRVM example in Figure 1, our system automatically folds all
code except the line in the dotted box.

Figure 1. Code snippet showing how cross-cutting concerns ob-
scure the underlying functionality of a method. This is code from
a class in the compiler infrastructure of the open-source JikesRVM
system.

We also automate the process of writing the necessary aspects
for code folding. A user opens a project with source files, adds
a default aspect (that our system automatically generates) to the
project, and builds the project. During compilation (from source to
bytecode), the system applies the aspects to produce the necessary
markers which Eclipse uses to identify locations in the source code
to fold.

We investigate three ways to employ this methodology to focus
the code regions that a user visualizes. We consider commonly used
names, profile data, and domain specific information. We imple-
ment our techniques within the open-source Eclipse IDE and As-
pectJ framework and show examples of its efficacy. In addition, we
measure the impact of our approach in terms of lines of source vis-
ible and folded. Our experiments, show that our simple techniques
are able to eliminate approximately 10% of irrelevant source code
from view with little help from the user.

In summary, we make the following contributions with this
paper:

• We extend AOP with new pointcuts and actions that mark in-
structions in the Java bytecode of a program.

• We employ our AOP implementation to extract code virtually
(i.e., fold away visually) that is not pertinent to the overall
algorithm a method implements.

• We enable automatic pointcut generation that is guided by novel
techniques including code block selection via common pro-
gramming idioms, program profile information, and domain-
specific information.

• We implement our approach within the freely available Eclipse
IDE framework and AspectJ.

• We evaluate the efficacy of our approach on the readability of
code in terms of the number of source lines folded and the
number of pertinent source lines that are made viewable.

In the sections that follow, we overview our approach and de-
scribe our prototypical implementation within Eclipse and AspectJ.
We then evaluate the efficacy of folding on source visualization
(Section 6). In the remaining sections, we present related work
(Section 7 and our conclusions (Section 8).

2. Using AOP to Remove Cross-Cutting Concerns
from View

The goal of our work is to improve ease with which large-scale
software systems are understood by new developers. Many such
systems implementing a wide range of technologies are increas-
ingly available as open source, e.g., operating systems, virtual exe-
cution and software development environments, web services, etc.
These systems have the potential for wide-spread use and exten-
sion in industry, research, as well as in the classroom. However,
such systems are difficult to understand and extend even when they
are written in object-oriented programming languages such as Java,
since methods commonly contain significant amounts of cross cut-
ting concerns or unrelated code blocks.

Programmers insert such blocks to assert that specific condi-
tions hold, to measure the performance of a code region, to print
out debug statements, or to log the state of the process at that point
in the execution. In our experience, a common implementation of
these cross-cutting measures is to insert these code blocks using
if-statements that check for a certain flag before conditionally ex-
ecuting the region. For example, the open-source JikesRVM sys-
tem implements 110 methods (of size 30 source lines or more 1)
for its implementation of the execution environment (methods from
VM * classes). Within these methods, 10% of the lines are within
code blocks of if statements for which the conditional includes the
string debug, verbose, measure, or log. These strings are
names of local variables and fields that the programmer used to
guard the execution of cross-cutting concerns. It is this type of pro-
gramming style that is the focus of our work.

Aspect-oriented programming (AOP) offers a solution to this
problem. Programmers specify cross-cutting concerns separately as
aspects and the compilation system weaves in these code blocks as
the appropriate points in the compiled code. Users specify potential
points in the code using pointcuts which the compilation identifies
as join points when conditions specified in the pointcut hold.

AOP offers a framework that enables programmers to improve
the modularity of software as they write it. However, much aspect-
unaware software exists; to achieve the benefits of AOP, these pro-
grams must be retrofitted with aspects. Much recent research has
focused on automating this retrofitting process and is referred to
in the literature as aspect mining [9, 10, 24, 1, 4] and AOP refac-
toring [6, 11, 17]. Aspect mining is the process of automatically
(or with the help of programmers) identifying cross cutting con-
cerns in software. AOP refactoring is the process of extracting the
concerns identified via mining and automatically creating aspects
from them. Extant approaches to aspect mining and refactoring are
resource intensive, require source code for the entire system, and
require expert programmer participation to ensure that the desired
outcome (the resulting code partitioning) is achieved.

In our work, we present a system for virtual mining and refac-
toring that enables similar results without modifying the program,
imposing overhead, or requiring programmer expertise. Moreover,
we employ AOP itself to automate this process.

In our system, users specify AOP abstractions that enable an
integrated development environment (IDE) to remove from view,
the cross cutting concerns in code. That is, we employ AOP in a
non-traditional way – to hide unrelated code blocks. Our AOP ex-
tensions are not woven into the compiled code but instead mark
points in the the code that map to source code lines. Our IDE ex-
tensions then use these markers to automatically fold code blocks
that are delimited with curly brackets and parentheses, syntax com-
monly used to specify conditional execution of cross-cutting code
bodies. Our techniques are only modifications to the perspective

1 We consider only those methods that span more lines than can be viewed
in an Eclipse IDE source window. We selected 30 lines for this size.

that the user is focused on – they do not change the semantics of
the program.

We implement our system within the Eclipse framework [8]
which implements AspectJ via the ajc compiler [13] as plugins. We
perform instruction marking online, during incremental (or batch)
compilation of the program, as is currently done for other AspectJ
aspects. We then modify the view of the source program on-the-fly.
As such, our techniques or folding as well as for the identification
of points in the code at which folding should occur are efficient.
Moreover, our system does not require that the user be familiar
with the code she is viewing, in order to reap the benefits of our
AOP-guided source folding system.

We first overview the relevant parts of the AspectJ system that
we extend and then describe the various components of our system.
Our system includes AspectJ extensions for identifying specific
conditional branch code blocks and for marking these instructions
in the bytecode. The second component is an extension to the
Eclipse IDE that exploits these markers to fold away from view the
cross-cutting concerns that they demark. The final component of
our system is a set of techniques that identify instructions to mark,
and thus fold, using aspects that we generate automatically.

3. AspectJ
AspectJ is an extension to the Java programming language that en-
ables users to define cross-cutting concerns separately and inde-
pendently. The AspectJ system interleaves i.e., weaves, the code
that implements the different concerns into the program automati-
cally at the appropriate points. Users specify these points and the
operations that must occur. AspectJ refers to as dynamic events in
the program at which weaving can occur as join points.

The join points that AspectJ currently supports are:

• Method calls and executions,

• constructor calls and executions,

• class field access,

• execution of exception handlers, and

• class or object initialization.

Users use the pointcut designator abstraction (pointcuts for short)
to select program join points. Pointcuts filter uninteresting events.
Examples of pointcuts include call, execution, get, set, and staticini-
tialization pointcuts. AspectJ also provides pointcuts that restrict
static (within for “within the execution logic of a particular type”)
and dynamic (e.g., cflow for “within in the control flow of”) scope.
Users can combine pointcuts using common logical operators, e.g.,
||, &&, and !.

AspectJ implements the join point kinds above since they cover
a wide range of implementations of cross-cutting concerns. In ad-
dition, these points are straightforward to identify and to add code
in bytecode – the level at which weaving is performed by most
systems [13, 3, 5]. However, this course-grain specification of join
points limits finer-grain AOP, e.g., at the basic block, loop, or in-
struction level. Researchers have extended the AOP systems to en-
able point cuts at the basic block level to enable program testing in
the Microsoft .Net framework [20] and to identify potentially par-
allel loops in AspectJ [12]. To enable our work, we implement a
new pointcut in AspectJ for a particular bytecode instruction.

The user also specifies the actions that are taken (and when they
are taken) when a selected join point executes. AspectJ supports
advice that is inserted before, after, and around (both before and
after). The user implements code that is executed at the join points
depending on the kind of advice. The weaving process interleaves
this code with that of the original program guided by the advice for
a selected join point.

AspectJ supports a second type of action called declare state-
ments. Declare statements enable static-crosscutting, e.g., intro-
duction of supertypes (declare parent), or alteration of a
method’s exception specification (declare soft). Other de-
clare statements are a compile-time mechanism that programmers
can employ to force the ajc compiler to communicate with the user
or IDE. For example, AspectJ supports declare error and
declare warning in which the compiler sends a message to
the execution environment (or standard error) about the source lines
at which a pointcut expression will match. AspectJ defines these
statements to enable users to enforce design constraints and to en-
sure that modularization is maintained as the program is modified.
We extend this mechanism to enable interaction with the Eclipse
IDE for our implementation of folding.

4. Extending AspectJ to Enable Automatic
Source Folding

We extend AspectJ with a new pointcut to which we refer to as an
ifCheck pointcut. In addition, we add the necessary supporting
advice for this pointcut as well as a new type of declare statement
to facilitate fine-grain communication with the Eclipse IDE to
enable folding of source lines. We describe these extensions in
the following sections. We then detail the various ways in which
we specify (and automate specification of) the code that should be
folded.

4.1 The ifCheck Pointcut

The ifCheck pointcut matches all conditional branch bytecode
instructions that use values of fields or local variables as part of
their boolean expression. We use the strings to match against field
and variable names of the conditional branch expressions. The
format of this pointcut pattern is as follows:

ifcheck(VarType [DeclType]VariableName);

VarType is the type of the field or local variable used in an ex-
pression of a conditional branch. VariableName is the name of the
variable and DeclType is the class in which the field is defined (and
is ignored if the variable is a local). Users can specify the wildcard
(*) for the components of the ifCheck. For example, given the
pointcut

ifcheck(* *DEBUG*);

our system matches a conditional branch bytecode with a condition
that employs any field or local variable of any type with a name that
contains the string “DEBUG”.

The Eclipse AspectJ system parses and compiles both .java
and .aj files to standard java class files incrementally as the user
modifies the programs, saves the programs, and loads the class
files of programs (the user can also choose to turn off incremental
compilation in which case, the system compiles the files in a project
when the user selects batch compilation). The system stores aspects
as class files and advice (including declare statements) as methods.
The system parses pointcuts within advice and declare statements
and records each as method attributes [16] in the class file.

Each pointcut instance implements a signature that consists of
the pattern that the programmer specifies. In AspectJ, the signature
template includes the modifiers, the return type, the declaring type,
the name, the parameter type list, and the throws pattern. The
parsing process fills in the relative parts of the signature for each
pointcut; a special type called “ANY” is specified for irrelevant
fields or when the wildcard is specified in the pointcut.

The AspectJ plugin in Eclipse implements a PatternParser that
the system uses to parse pointcuts. We extend this utility to recog-
nize the ifCheck pointcut that we define above. Our extensions

fill in the signature template of the pointcut. We use the return type
slot for the actual type of the variable. If the declaring type is not
specified or is specified by a wildcard “*”, our parser extensions fill
in the declaring type slot with the “ANY” type. This means that the
pointcut can be matched to both class fields and local variables. We
also create a new pointcut object from this signature and set its kind
flag to ifCheck. We serialize this object into the method attribute
of the advice to which it is linked in the aspect.

Once the system compiles the source files to classes, it feeds
them to the weaver. The weaver creates a munger for each ad-
vice (or declare statement). The weaver extracts the pointcut spec-
ifications from the advice attribute and stores it in a correspond-
ing munger. When this process completes, the weaver has a list of
mungers which it uses to compare to each class file (i.e., method
bodies) for potential join points. For example, a GETFIELD in-
struction is a potential join point for a get pointcut. If such a po-
tential join point is identified, the weaver creates a shadow for it. A
shadow specifies the kind of pointcut to which this instruction can
match. A shadow also includes the type information for the point,
called the signature. For example, the signature of a shadow of a
GETFIELD instruction includes the field type, its declaring type,
and its name.

Finally, the weaver compares the shadow to each munger in the
list. If the shadow matches any munger, the weaver implements
the action embedded in the munger. For example, if the munger
represents before advice, the weaver inserts the method body of
the before advice immediately prior to the bytecode identified by
the given shadow. Note that the matching process of a munger and
a shadow compares the signatures of the pointcuts of the munger
against the signature of the shadow. Different pointcuts specify
different criteria for matching. For example, for a get pointcut,
a match occurs when the modifier, return type, declaring type,
and name of the two signatures are compatible (in terms of the
inheritance hierarchy) with each other.

4.2 Creating shadows

To enable our ifCheck, we also modify the shadow creation pro-
cess. Each kind of pointcut has a certain bytecode instruction as its
potential join point. For our ifCheck, all conditional branch byte-
code instructions are the potential join points. However, since our
focus is on conditional branches for which the conditional consists
of a field or local variable use, we filter the potential join points to
be conditional branches that operate on stack operands produced
by GETFIELD, GETSTATIC, and *LOAD bytecode instructions.

There are two types of conditional branch instructions in the
Java bytecode instruction set: Those that require one stack operand
(e.g., IFEQ), and those that require two stack operands (e.g.,
IF ICMP). For the first type, we need only check whether the pre-
decessor of the bytecode instruction is a field or local variable ac-
cess. For the second type of conditional branch instruction, we must
check two stack operands for a match. To identify the operands, we
perform reverse abstract interpretation from the matched instruc-
tion to find the producers of the instruction operands. To implement
this process as efficiently as possible, we terminate this process
if we reach an instruction with multiple predecessor instructions,
potentially failing to identify a join point. We found however, that
given the ajc compilation strategy, we are able to find all join points
in the programs that we studied. In addition, we found that the scan
length is commonly less than four instructions on average.

Once we determine the conditional branch instruction that we
are considering is a potential join point of the ifCheck, we next
generate an appropriate signature for the point that we will later
use to match against the signature of the pointcut. For all of the
current join point kinds in AspectJ, we can extract the information
needed to create a signature from the instruction. For example, we

can extract the type, declaring type, and name of a field directly
from a GETFIELD instruction. Similarly, we can extract all pieces
of the signature for the INVOKE* instruction (name, declaring
type, parameter types, return type, etc.) directly. For conditional
branch instructions, however, there is no information embedded
in the IF* instruction. We must extract this information from the
corresponding field access or local variable load instructions. We
perform this step during reverse abstract interpretation.

Since there may be more than one signature for one conditional
branch instruction that we must compare against the pointcut, we
generate a linked list of signatures. We generate one signature for
each field or local variable access. We implement the signature
linked list as a subclass of the current signature class, with one
extra field, called “next”. We store the reference to the signature
list as AspectJ does for all other signatures in a shadow object.

4.3 Matching Mungers against Shadows

We next modify the matching process of mungers and shadows
in support of our new pointcut. As we describe above, the sys-
tem eventually delegates the matching of mungers to shadows to
matching the signature of munger pointcuts to shadow signatures.
Since the signature of the shadow of a potential join point for the
ifCheck pointcut contains a linked list of signatures, we com-
pare the signatures in the list to the pointcut signature until we find
a match. For the field access signature, the matching process is sim-
ilar to the get pointcut: We compare the return type, declaring type,
and name. If the field is not found in the current declaring type,
we also examine all supertypes. For local variables, we need only
compare the name and return type.

For the ifCheck pointcut to be used as other pointcuts, we also
define before, after, and around advice for the ifCheck. We define
before to be the point immediately preceding the conditional
branch instruction. We define after to be the point immediately
following the conditional branch, that is, immediately prior to the
first instructions of both of the target instructions of the branch. We
define around as both before and after.

Given this implementation, we can write:

before(): withincode(void hello())
&& ifcheck(* TRACE)

{
System.out.println("before check TRACE: "

+ thisJoinPoint);
}

which inserts the code body before every IF* bytecode that em-
ploys a boolean expression that uses a field or local variable with
the substring “TRACE” in its name, within the “hello” method.
Note that this example requires that we add extra code to the As-
pectJ runtime module to support the implementation of thisJoin-
Point.toString() (to print the string above).

4.4 Declare Statement Extension

As we stated previously, AspectJ implements two types of actions:
advice and declare statements. Advice guides the weaver to insert
code blocks at the join points identified, while declare statements
specify non-weaving actions.

We extend AspectJ with an general-purpose action, called de-
clare location. This action marks and reports the source lines of the
matched join points. We then exploit this action within Eclipse to
implement AOP-guided folding. However, this action is also useful
for debugging aspects.

The declare location is an action that is static, i.e., it cannot
rely on runtime information to select join points. The format of the
declare location statement is similar to declare error and declare
warning and we specify it as follows:

declare location: pointcuts [: message]

message is an optional parameter that, if specified, is communi-
cated along with the source location. All pointcuts, including the
ifCheck, can use the declare location action. For example,

declare location: withincode(void hello())
&& ifcheck(* TRACE)
: "checking TRACE in hello()";

marks and reports all lines of code at which a variable with the
substring “TRACE” in its name, is used in a conditional branch
expression within the hello() method. For each such location, a
message “checking TRACE in hello()” is attached. In this example:

pointcut foldCatchBlocks() :
handler(!NullPointerException);

declare location: foldCatchBlocks();

the pointcut identifies all catch blocks that can catch an exception
other than the NullPointerException. The declare statement, causes
the system to identify the locations in the code at which these points
occur and report them to the IDE or standard out. In this example,
we do not specify the message.

The implementation of declare location is similar yet simpler
than that of the ifCheck. The parsing process of advice and de-
clare statements are handled by the PatternParser. We extend this
class as we do for ifCheck, to parse declare location statements.
We create an object of a special kind of ShadowMunger, called a
LocationChecker, for this statement. The object contains the parsed
pointcuts and messages. During the munger and shadow matching
process, the LocationChecker delegates the matching to its enclos-
ing pointcuts. If the signature of a pointcut matches the signature
of the given shadow, the LocationChecker records the source loca-
tion of the join point of the shadow. The LocationChecker returns
“not matched” regardless of whether a match is made to turn off
the weaving process for the declare location action.

4.5 Exploiting Declare Location Advice in Eclipse

We can exploit the location markers generated by our declare loca-
tion action in a number of ways. In this section, we present one such
application in which we use the location report within an Eclipse
IDE plugin that we have designed. The plugin, called AJFolderPlu-
gin, consumes a location report and generates a projection (a view)
of the Java source code file. The projection folds away code blocks
identified by the source locations in the report.

In Eclipse, the project build process with AspectJ is handled
by the plugin AJBuilder. This builder sets up the build environ-
ment, and then invokes the AspectJ compiler and weaver to do
the real work. The AJBuilder keeps a list of listeners that it can
alert when compilation begins and end via the IAJBuildListener
interface methods preAJBuild and postAJBuild. We monitor and
intercept this build process with the AJFolderPlugin using the IA-
JBuildListener interface. We use the postAJBuild method to collect
the location reports produced by the builder, if any, and then update
the location map for the built project.

Eclipse implements a general folding mechanism in the Projec-
tionView. The ProjectionAnnotationModel specifies folding behav-
ior using a list of annotation entries each designating the start and
end offset of the folding area. The model also indicates whether the
folding area is collapsed or expanded. Each time the list of annota-
tions is replaced, the model updates the view automatically.

We implemented the postAJBuild method to generate a new
annotation list and to update the model each time a build completes.
We use the location report to generate the list. As a result, all
locations that the AOP system identifies for any currently open
source files are folded automatically. The location report specifies
the point in the source at which folding begins. This is a point in

the code that either contains parenthesis or curly brackets. If an if
statement does not employ curly brackets, we insert them to enable
folding. The AJFolder plugin identifies the offset in the code that
ends the scope started at that point in the code (a close parenthesis
or curly bracket). The plugin replaces the source lines with a single
line containing the string “{ . . . }” at the point at which the curly
braces start, or “(. . .)” at the point at which the parenthesis start.
The plugin also places a marker at the source line that the user can
use to manually expand and collapse the line at any time.

The AJFolderPlugin also enables users to specify the various
folding options via the Window preferences page of the Java Editor.
This overrides the default folding functionality which employs
an all-or-nothing approach – either all methods, comment blocks,
or imports are folded or they are left expanded. Our mechanism
enables selection of such blocks as well as blocks and regions
within methods.

This implementation enables folding at a fine grain given any
point in the code with parenthesis or curly braces. This includes
try and catch blocks, synchronized scopes, loops, parameters, and
expressions, in addition to if-then-else blocks. Other programmers
and researchers have shown how to implement pointcuts for syn-
chronized scopes [23] and loops [12]. Our ifCheck pointcut cap-
tures if-then and if-then-else blocks and their parenthesized ex-
pressions. The default AspectJ implementation includes support for
identifying methods (and thus method signatures containing paren-
theses) and catch blocks (via handler pointcuts). We can extend
(and plan to as part of future work) this latter support to include try
blocks which are specified as part of the method exception attribute
in the bytecode, so that they can also be candidates for folding.

In the next section, we describe the unique ways that we can
select these individual code regions for selective collapsing or ex-
panding of blocks. The examples below show how to specify the
pointcuts for particular folding candidates.

pointcut foldMethod() :
execution(public static *foo(..));

declare location: foldMethod();
declare location: ifCheck(* Options.DEBUG);

The first declare statement identifies all public, static, methods with
the name foo (regardless of their parameter and return types), and
extracts them as folding candidates. The second declare statement,
identifies all if expressions in the source that use a field from the
Options class with the string “DEBUG” in its name.

5. Identifying Folding Points in the Code
Our next step in the process of AOP-guided source folding, is to
identify scopes in the code that should be folded to best clarify the
underlying semantics or behavior of a Java source method or class
definition. We describe three ways in which we do this. The first
is to use a database of names that are commonly used for variables
in expressions that begin if-then and if-then-else scopes of cross-
cutting concerns. The second is the use of profile information to
identify infrequently (and frequently) executed blocks. The third
is the use of domain specific information that is specified by the
programmer.

5.1 Automatic Generation of Pointcuts Using Common
Variable Names

Our first technique for identifying folding points in the code is
based on our observations of and experiences with open-source
systems. We find that there are a small number of commonly used
variable names that programmers use as part of if-expressions to
implement cross-cutting concerns. The names that we employ cur-
rently are:

DEBUG, TRACE, LOG, MEASURE, TIME, TIMING,
SANITY, ASSERT, PRINT, OPTION, PROFILE,
CHECK, VERBOSE, DUMP, TRACK

Our string matching process is insensitive to case.
To ease the job pointcut implementation by users of our system,

we keep a per-project database, called the autoAOPDB, of these
names as part of the Eclipse IDE. When a user creates an new
aspect, she can choose to have ifCheck pointcuts for these com-
monly used strings, automatically (re-)generated for her. The user
can add and delete strings from this list at any time. Here are exam-
ples of the automatically generated declare location advice that use
the ifCheck pointcuts and default string names:

declare location: ifCheck(* DEBUG);
declare location: ifCheck(* PROFILE);
declare location: ifCheck(* VERBOSE);

We also use the autoAOPDB to store names of exception han-
dler types and method names. This enables us to generate pointcuts
which fold away entire methods and catch blocks, e.g., we fold
catch blocks that expect the type Exception using:

declare location: handler(Exception);

We can also extend this component to identify names automatically
from the source or bytecode of a program. For example, we can
identify variable names that have boolean types or boolean fields
that are static and final. We plan to investigate such techniques as
part of future work.

One limitation of our system (that results from the use of the
Java compiler employed by Eclipse), is that the compiler performs
some optimization that breaks the connection between the source
and the bytecode in some cases. One example of this, is that the
compiler eliminates if-blocks if it can determine that the condition
is always false, e.g., the conditions checks a boolean static final
field that is set to false. To avoid this during program development
or investigation, we must turn off such optimizations to enable
folding. We can then enable optimizations for final or release builds
of the system.

5.2 Profile-Guided Selection of Folding Pointcuts

Another unique way in which we can automatically specify and
employ AOP-based folding, is to use profile information. A profile
consists of information about the execution of a program. Profiles
are commonly used to guide optimization (by hand or automatic)
and can give programmers insight into how their code is exercised
by an input. We automate this latter process by hiding (or exposing)
infrequently executed blocks.

During the build process within Eclipse, we modify the byte-
code that the system compiles during the bytecode analysis step of
AOP weaving. Eclipse employs the bytecode engineering library
(BCEL) to manipulate, analyze, and optimize the bytecode. We ex-
tend this process to insert profile collection instructions into the
bytecode. These instructions count the number of times each in-
struction (or basic block) is executed.

They type of profiling that we can perform is flexible. We can
insert instructions that count the number of times the fall-through
and branch target instructions are executed. We use this informa-
tion to determine whether the fall-through or the branch is taken
more frequently. The resulting profile contains the bytecode index
of each conditional branch instruction with 1 bit of information in-
dicating that the fall through (0) or the jump target (1) is taken more
frequently. Currently, we do a simple compare as to which is greater
and mark the fall through if they are equal. As part of future work,
we plan to investigate ways of having the user set a threshold that
determines which code regions should be marked.

During aspect generation, a user can select to incorporate this
profile information. To do so, the user specifies an input to the
program (as part of the current Run process). At the end of the build
process, we execute an instrumented version of the program in the
background to collect the profile data. When a profile is available,
the user presses a button to incorporate the information into the
folding aspect. The user also specifies whether she is interested in
folding away infrequently used blocks or frequently used blocks.
We use the former to expose commonly executed code and potential
optimization opportunities. For example, we can use it to identify
code regions that are, perhaps unexpectedly, commonly executed
as well as when, which, and how commonly used data structures
are accessed. Folding unused code regions can reveal whether the
input is an appropriate coverage test, how to generate such tests,
and to identify untested code regions that may be hiding bugs.

In addition, we can change how Eclipse exploits the AOP-
generated code markers when the users employs profile-guided
pointcuts. Instead of folding code, we can highlight frequently
executed regions. We can employ any type of source-line-based
visual technique that is available as a plugin in the same way as
we do for the AJFolderPlugin. This is useful if we are interested in
other types of profiles, e.g., field accesses. We use the profile data
to identify the most common field accesses. Eclipse can then use
the markers at these points to highlight the corresponding source
instructions.

To implement AOP-based folding using profile data, we read in
the profile data and store the bytecode instruction line numbers as
part the autoAOPDB. We add the bytecode indices as strings and
during pointcut parsing, we check whether the name starts with an
integer (which is not allowed in Java for field, method, and variable
names). If it does, the matching process simply checks whether the
bytecode index is the same as the one in the pointcut and is an
IF* instruction. If it is, then the instruction is marked as described
previously and communicated to the execution environment with
a message set to be the bit of information indicating fall through
or branch target. During folding (or highlighting), we use this
information to fold the if-part of the the source or the else-part of
the source. If there is no else-part and the fall through is selected,
we fold the if block, otherwise we perform no folding. Note that
we need not incorporate the profile data into the autoAOPDB but
instead use it within Eclipse directly. We do so to maintain an
uniform interface between aspect generation and application and
the IDE and so that the user has control over what is folded and
what is not (via a view within the IDE) throughout the lifetime of
the project.

5.3 Domain-Specific Selection of Folding Pointcuts

The final technique we incorporate for selecting folding pointcuts
uses domain specific string names. Commonly, users employ intu-
itive method names that indicate the functionality implemented by
the method. For example, in JikesRVM’s garbage collection sys-
tem, methods related to allocation contain the substring alloc in
their name.

We can automatically fold source code according to these do-
main substrings using our system. The user can specify a folding
pointcut such as:

declare location: !execution(* *ALLOC(..));

A user can add these strings to the autoAOPDB. The execution
pointcut identifies all methods with the type signature indicated –
this is original the AspectJ behavior. The declare location causes
the method to me marked as opposed to weaving in any code. The
marking is then used by the folding system to expand or hide code.
If !execution is used, then all methods except those with “ALLOC”

Figure 2. AOP-Guided folding within the Eclipse framework.

Program Description
JEdit Visual text editor
Jetty HTTP servlet server
JikesRVM Java Virtual Machine with adaptive

optimization and multiple GC systems
Joeq Research Java Virtual Machine
SpecJBB SPEC transaction processing application
Weka Machine learning algorithms for data mining

Table 1. Benchmark descriptions for the open-source software
systems that we analyzed.

Figure 3. Benchmark characteristics for our set of large, open-
source, programs

in their name will be folded. We modify exact matching of names
to enable substring matching.

In Figure 2 we show a snapshot of our system and a folded
JikesRVM file. The file is from the compiler harness and is called
VM RuntimeCompiler.java. This is the file from which we ex-
tracted the code in our first example, Figure 1. The autoAOPDB
in the Folder DBase view on the bottom left. These are the string
names in the database that we employ for automatic pointcut gen-
eration. We have employed a number of different declare location
actions for this file: The if-statements are folded via the ifCheck
pointcut and the method is folded using the execution pointcut. The
latter employs our domain-specific pointcut generation which we
specify as:

declare location: !execution(* *COMPILE(..));

We have chosen not to fold the parenthesis so that the reader is able
to see which names were matched by the autoAOPDB-generated
pointcuts, e.g., measure and assert.

6. Evaluation
In addition to the visual snapshots that we present in the previous
section that show the impact of our system, we also evaluate our
system using a number of different benchmarks. In the subsections
that follow, we describe our methodology and then present our
empirical findings.

6.1 Empirical Methodology

We implemented our system as plugins as described in the previous
sections to the Eclipse framework version 3.1 using the Java 2
Platform version 1.4. Eclipse implements AOP via AspectJ plugins.
Our system uses the AspectJ Development Tools version 1.3.

To evaluate our system, we selected two sets of benchmarks.
The first set includes large applications from the top Java down-
loads (with source freely available) from SourceForge.net [21], the
Jikes Research Virtual Machine [2], and SpecJBB from the Stan-
dard Performance Evaluation Corporation (SPEC). We list these
programs in Table 1, and briefly describe what they do.

Figure 4. Benchmark characteristics for a subset of the
SpecJVM98 benchmarks

We present the overall source characteristics of these bench-
marks in the table in Figure 3. The second column is the number
of methods that we processed from each benchmark. We only con-
sidered methods with 30 or more lines of source code. We specify
the total number of source lines that we processed in these meth-
ods in column 3. The fourth column is the average lines of code
per method. The fifth column is the number of methods in each
project that contained at least one opportunity for folding (and if
statement with one of our autoAOPDB strings in the expression).
The final column shows the percentage of these methods given all
of the methods that we analyzed.

On average 44% of the methods that we analyzed had imple-
mented folding opportunities, i.e., cross-cutting concerns guarded
by if-statements. The average number of source lines in the meth-
ods that we analyzed was 82.

We also evaluate the efficacy of profile-guided selection of if-
statements. Such selection may be useful to users when source
code does not contain any obvious key words that are used in if-
statement conditional expressions. Folding of frequently or infre-
quently used code blocks can also be useful to programmers for
identifying bugs and optimization opportunities. For this study, we
employed the a subset of the SpecJVM98 benchmark suite [22]. We
include the programs from this suite for which source was avail-
able. We present the source characteristics for these programs in
the table in Figure 4.

6.2 Results

To evaluate the efficacy of our system in terms of the number of
source lines eliminated from view as a result of AOP-guided fold-
ing, we analyzed our large-program benchmark set. We counted the
total number of source lines in methods with greater than 30 source
lines. We selected 30 as our threshold since that is the number of
lines that is viewable using the default Eclipse settings on the au-
thor’s laptop.

We also counted the number of lines that remained after we
performed the folding. We employed autoAOPDB selection using
the list of keywords that we specify in Subsection 5. We also
employ folding for catch blocks as we describe at the end of
Subsection 4.4. The declare statement and pointcut that we use to
enable this is

pointcut foldCatchBlocks() :
handler(!NullPointerException);

declare location: handler(*);

Figure 5 shows the percent reduction in the number of source
lines in methods for which there is a folding opportunity. The first
bar for each program shows the percent reduction enabled by both
the ifCheck pointcut and catch block folding. On average, we
eliminate 13% of the source lines from view. The second bar is the
percent reduction do to the ifCheck pointcut and autoAOPDB
selection alone (without catch block folding). On average, we elim-
inate 8% of the source lines.

Most programs achieve a majority of the reduction from the
ifCheck pointcut and autoAOPDB selection. JEdit and Jetty

Figure 5. Percent reduction in source lines when we employ autoAOPDB generation of pointcuts (Subsection 5) and AOP-guided folding.

show reductions primarily as a result of catch block folding. These
programs contain very few cross-cutting concerns that are guarded
by if-statements. For the methods that do contain such code, the
primary keyword matched is “DEBUG”. “DEBUG” is the most
popular keyword across all programs, with “TRACE” and “VER-
BOSE” following second.

We also investigated the efficacy of using profile information to
guide automatic generation of aspects. For this study, we counted
the number of times the basic block targets of each conditional
branch were executed for a specific input. Our profile identified the
conditional branch and whether or not the fall through or the branch
target basic block was taken less often. We then used this profile to
generate pointcuts for each conditional branch. The string name
filter in each pointcut is the bytecode index. The declare action
marks these source lines and Eclipses uses the markers to perform
folding.

Figure 6 shows the results for a subset of the SpecJVM98
benchmarks. We only employed those benchmarks for which the
source is available. The compress benchmark benefits the most
for profile guided folding since many of the same code blocks in
the program are repeatedly executed; we fold away the others. On
average, we reduce the number of lines of code that the user sees
by 9% using this technique.

7. Related Work
Our system is unique in that it combines and extends techniques
from AOP, refactoring, and profile guided optimization for the
purpose of improving source code clarity and understanding. There
has been a significant amount of related work in these areas but
none that, to our knowledge, combines the techniques and employs
the resulting system in the same way.

The research most related to the our work is aspect mining.
The authors in [7] survey current aspect mining and refactoring
techniques and motivate the need for AOP refactoring in legacy
systems. Aspect Browser[9], AMT [10], and AMTex [24] each
exploit naming conventions to identify cross cutting concerns in
legacy code. The latter two tools combine string names with type
information. Shepherd et. al in [1] employ and extend a program
dependence graph approach for clone identification with which
they couple data flow information to refine and extend the mining
process without help from the user.

In our system, we use a very simple, ad-hoc approach to mining
that relies on common programmer idioms or on the programmer

Figure 6. Percent reduction in source lines when we employ
profile-guided generation of pointcuts (Subsection 5.2) and AOP-
guided folding.

herself to specify string names of class members. We store these
names in a database and generate ifCheck pointcuts from them
automatically. The programmer can add or delete names from this
database. In addition, we employ profile information to identify
code behaviors that are useful to fold. Since our system identifies
these concerns each time compilation (incremental or batched) is
invoked, identification of these concerns must be fast, precluding
resource-intensive approaches of extant techniques.

Our work is also related to research that describe AOP exten-
sions, in particular, research that implements new join points. The
goal of our join point extensions however, are different from all
extant join points in that they are not intended to modify the dy-
namic behavior of a program. Instead they introduce markers into
the bytecode which a source-level visualization tool such as Eclipse
can use to fold away unrelated concerns or to highlight important
source blocks (i.e. those commonly executed during profiling).

Two join points that are most similar to ours is the implemen-
tation of basic blocks join points described in [20] and the dis-
cussion on supporting if-then-else join points in [12]. The former
work extends AspectJ with conditional and iteration pointcut des-
ignators and expressions to enable code testers to express test ad-
equacy analysis relative to cross cutting concerns. In [12], the au-
thors present the design and implementation of a loop join point
which they use to specify loop-based parallelism. They discuss the

potential implementation of extending their system to model an if-
then-else join point.

Folding is another mechanism which we incorporate within our
framework. Folding is a technique used in Eclipse to hide lines
of the source program from view. Currently, Eclipse implements
a folding plugin to fold all comments, header comments, entire
method bodies, import lists, and inner classes. We implemented a
new folding plugin that folds any code body within curly braces
and parentheses. We then link this functionality to the extended
AOP plugin which identifies points in the code at which folding
should occur. As such, we perform folding at a finer grain, i.e., the
default folding applies folding to all methods when selected and we
apply folding to individual methods that do not match the domain
of interest.

8. Conclusions
To improve code understanding without requiring modification of
the program, we present a set of techniques that employ and extend
AOP and the Eclipse integrated development environment. Our
system hides from view unrelated code bodies within the scope of
conditional branches, methods, and catch blocks. We employ new
pointcuts and filters to identify these program entities and a new
action that marks bytecode instructions for use by a source code
visualization system, such as the Eclipse IDE. We extend Eclipse
to consume these markers and use them to guide code block folding
and highlighting.

We automate generation of the aspects by identifying branches
that use common and domain-specific string names within their
expressions, e.g., DEBUG, VERBOSE, MEASURE, ALLOC, etc.
We also show how to couple profile information with automatic
aspect generation to enable marking of frequently (or infrequently)
used code blocks.

Our empirical evaluation of the system indicates that 44% of
all methods in popular, large-scale Java software systems imple-
ment cross-cutting concerns using if statements that are guarded
by a small number of intuitive keywords. Our system reduces the
number of source lines by 8% on average for methods that have an
average size of 82 source lines. We also show that we are able to
avoid 9% of source line by identifying via profiling unused condi-
tional branch bodies and folding them from view.

References
[1] D. S. abd Jeffrey Palm, L. Pollock, and M. Chu-Carroll. Timna:

A framework for automatically combining aspect mining analyses.
In International Conference on Automated Software Engineering,
November 2005.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine. IBM
Systems Journal, 39(1):211–221, 2000.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak,
O. de Moore, D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible aspectj compiler. In International conference on Aspect-
oriented software development (AOSD), Mar. 2005.

[4] S. Breu and J. Krinke. Aspect mining using event traces. In 19th
IEEE International Conference on Automated Software Engineering
(ASE’04), pages 310–315, 2004.

[5] S. Chiba and K. Nakagawa. Josh: an open aspectj-like language. In
International conference on Aspect-oriented software development
(AOSD), pages 102–111, 2004.

[6] L. Cole and P. Borba. Deriving refactorings for aspectj. In
International conference on Aspect-oriented software development

(AOSD), Mar. 2005.

[7] A. v. Deursen, M. Marin, and L. Moonen. Aspect mining and refac-
toring. In International Workshop on REFactoring: Achievements,
Challenges, Effects (REFACE03)., Nov. 2003.

[8] Eclipse.org. Eclipse framework, 2001. http://www.eclipse.
org/.

[9] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect browser: Tool support
for managing dispersed aspects. In Workshop on MDSOC, 2000.

[10] J. Hannemann and G. Kiczales. Overcoming the prevalent decom-
position of legacy code. In Workshop on Advanced Separation of
Concerns at the International Conference on Software Engineering
(ICSE) 2001, 2001.

[11] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns. In International conference
on Aspect-oriented software development (AOSD), Mar. 2005.

[12] B. Harbulot and J. R. Gurd. A join point for loops in aspectj. In
Workshop on Foundations of Aspect-Oriented Languages (FOAL
2005), 2005.

[13] J. Hugunin. Guide for developers of the aspectj compiler and
weave, 2004. http://dev.eclipse.org/viewcvs/index.cgi/ check-
out /org.aspectj/modules/docs/developer/compiler-weaver/index.html?
rev=1.1&content-type=text/html&cvsroot=Technology Project.

[14] G. Kiczales. Aspect-oriented programming. In European Conference
on Object-Oriented Programming (ECOOP), June 1997.

[15] C. Krintz. Using adaptive optimization techniques to teach mobile
java computing. In Workshop on Intermediate Representation
Engineering for Virtual Machines (IRE), pages 41–46, 2002.

[16] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison Wesley, second edition, Apr. 1999.

[17] M. Marin, L. Moonen, and A. van Deursen. An approach to aspect
refactoring based on crosscutting concern types. In Workshop on
Modeling and analysis of concerns in software, pages 1–5, 2005.

[18] D. Nelson and Y. M. Ng. Teaching computer networking using open
source software. In Conference on Innovation and technology in
computer science education, pages 13–16, 2000.

[19] J. Nieh and C. Vaill. Experiences teaching operating systems using
virtual platforms and linux. In Technical symposium on Computer
science education, pages 520–524, 2005.

[20] H. Rajan and K. Sullivan. Aspect language features for concern
coverage profiling. In International Conference on Aspect-Oriented
Software Development (AOSD), 2005.

[21] Sourceforge.net. http://sourceforge.net/.

[22] SpecJVM’98 Benchmarks. http://www.spec.org/osg/jvm98.

[23] Synchronized Block Pointcut Semantics. http://blogs.
codehaus.org/people/jboner/archives/001134_
semantics_for_a_syn%chronized_block_join_point.
html.

[24] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware
platforms. In International Conference on Aspect-Oriented Software
Development (AOSD), pages 130–139, 2003.

