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Abstract
Understanding Java application behavior is non-trivial given the
virtual machine on which the Java application gets executed. This
paper proposes vertical profiling through dynamic binary instru-
mentation for analyzing Java applications. The idea of vertical
profiling is to provide a accurate picture of the program’s execu-
tion that crosscuts various layers of the execution stack. Vertical
communication between the virtual machine and the dynamic in-
strumentor is implemented through a callback mechanism which
makes vertical profiling very easy to implement because very few
modifications need to be made to both the virtual machine and the
dynamic instrumentor. Our second contribution is aspect-oriented
instrumentation (AOI) which is a natural way for expressing instru-
mentation, especially in case vertical instrumentation is the target.
Finally, we build a vertical profiling framework called DJ and an as-
sociated VAOMI vertical aspect-oriented instrumentation language
that allows for quickly building customized vertical profiling tools.
We evaluate the overhead of vertical profiling and demonstrate its
applicability through two applications: vertical cache profiling and
object lifetime computation.

1. Introduction
Understanding the behavior of software is of primary importance to
improve its performance. Application developers, system software
designers, computer architects, etc. all need a good understanding
of an application’s behavior in order to optimize overall system per-
formance. Analyzing the behavior of applications written in imper-
ative languages such as C and C++ is a well understood problem.
However, understanding the behavior of modern software that re-
lies on a runtime system, which introduces an additional layer of
virtualization, is much more challenging. This additional layer is
typically called a virtual machine (VM). The popularity of virtual-
ization software has grown significantly over the recent years with
programming languages such as Java and .NET. The reasons for the
increased popularity of virtualization environments are portability,
security, robustness, automatic memory management, support for
reflection, object-oriented programming, etc. Virtualization though
makes the behavior of modern software hard to understand, or at
least harder to understand than software written in imperative lan-
guages. When looking at the lowest level of the execution stack,
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i.e., when looking at the individual instructions being executed on
the host machine, it is hard to understand the application’s behavior
because of the fact that the virtualization software gets intermixed
with application code at that level of the execution stack. However,
when the goal is to understand the application’s behavior, the low-
est level of the execution stack really is the level to look at. For ex-
ample, an application developer might be interested in finding the
lines of code causing the highest cache miss rates; these can only
be found by tracking native instructions. For application develop-
ers, virtualization makes it hard to understand the application’s be-
havior since any performance metric measured at the lowest level
in the execution stack includes both the application as well as the
virtual machine.
In this paper we propose vertical profiling for analyzing Java

applications. This is done by adding a dynamic binary instrumen-
tation layer beneath the virtual machine that monitors the native
instructions being executed. The instrumentation layer communi-
cates with the virtual machine through a callback mechanism. The
callback mechanism enables the virtual machine to inform the in-
strumentation layer on a number of issues, for example when an
object is created, moved, or collected, or when a method gets com-
piled or re-compiled, etc. The information exchanged between the
virtual machine and the instrumentation layer typically is a map-
ping of high level concepts such as methods, lines of code, objects,
object types, etc. to native address ranges. By doing so, the instru-
mentation layer is capable of linking the low level behavior to high
level constructs in the application, in the VM, etc., effectively col-
lecting a vertical profile. An important advantage of employing bi-
nary instrumentation is that very few changes need to be made to
the virtual machine in order to build a vertical profiling framework.
Obtaining a similarly detailed vertical profile without binary in-
strumentation would have required many more changes in the VM.
In addition, modifying the VM might perturbate the results being
measured as the instrumentation code may change code and data
layout. Dynamic binary instrumentation underneath the virtual ma-
chine alleviates this issue.
An additional requirement for a powerful instrumentation

framework is an easy to use instrumentation specification medium.
We present aspect-oriented instrumentation for this purpose. The
idea behind aspect-oriented instrumentation (AOI) and aspect-
oriented programming (AOP) is to specify functionality that con-
cerns whole programs in a modular way. This is in sharp contrast
to imperative instrumentation; aspect-oriented programming gives
a much more natural way of expressing instrumentation. In this
paper, we propose the VAOMI (Vertical Aspect-Oriented Memory
Instrumentation) language, an aspect-oriented instrumentation lan-
guage geared towards building customized vertical profiling tools
for analyzing the memory behavior of programs written in object-
oriented languages.



We demonstrate the feasibility of our vertical profiling proposal
using aspect-oriented dynamic binary instrumentation by propos-
ing the DJ (DIOTA-Jikes RVM) system, which combines the Jikes
RVM [1] with the DIOTA instrumentation tool [10, 9]. We show
that our DJ system is very effective and powerful for profiling Java
applications. We discuss two diverse applications of the DJ system
for analyzing the memory behavior of Java applications. In the first
application, we study the cache behavior of Java applications. We
show that DJ allows for tracking miss rates per object type and per
method. This allows for a very powerful application analysis frame-
work. For example, using the DJ vertical instrumentation frame-
work it is easy to collect the top most cache miss causing lines of
code, or the top most cache miss causing object types, etc. This
is invaluable information for an application developer who wants
to optimize his piece of software. In our second application, we
show that the applicability of the DJ system goes beyond vertical
profiling. Object lifetime is an important behavioral characteristic
that is often used for analyzing the memory behavior of object-
oriented programs. Computing an object’s lifetime, although con-
ceptually simple, is challenging in practice within a VM because
the VM needs to be adjusted in numerous ways. This is both very
time-consuming and error-prone. Computing object lifetime distri-
butions using DJ only requires a few tens of lines of VAOMI code.
This paper makes the following contributions.

• We propose vertical profiling for analyzing Java application be-
havior. Vertical profiling allows for correlating low level in-
formation to high level information such as methods and ob-
jects. Our vertical profiling approach uses dynamic binary in-
strumentation for obtaining these vertical profiles. The key en-
abler for vertical profiling through dynamic binary instrumen-
tation is a newly proposed callback mechanism which allows
for efficiently communicating high level information from the
virtual machine to the dynamic binary instrumentor. The im-
portant benefit is that very few changes need to be made to the
virtual machine in order to build a vertical profiling framework.

• We propose aspect-oriented instrumentation as a way for spec-
ifying the desired vertical profile. For example, aspect-oriented
instrumentation allows for easily tracking all objects of type T,
or all memory locations accessed from method M, etc. Aspect-
oriented instrumentation is a much more natural way of expres-
sion than todays imperative instrumentation tools; and this is es-
pecially convenient for specifying vertical profiles. We present
the VAOMI language for specifying customized vertical instru-
mentation routines.

• We demonstrate our vertical profiling approach through aspect-
oriented dynamic binary instrumentation in a Java application
profiling framework, called DJ, that is built around the Jikes
Research Virtual Machine and the DIOTA instrumentation tool.
We present two applications that clearly show that the DJ en-
vironment along with the VAOMI language is a powerful Java
instrumentation framework: vertical cache miss profiling and
object lifetime computation.
The DJ vertical profiling environment will be made publicly

available if the paper gets accepted.

2. Vertical profiling through dynamic binary
instrumentation

The basic idea of vertical profiling is to measure metrics at vari-
ous levels of the execution stack and to link those metrics across
the various levels, i.e., low level metrics are linked to high level
concepts, and vice versa. Figure 1 illustrates how vertical profil-
ing through dynamic binary instrumentation works for profiling a
Java application. At the top of the execution stack we have a Java
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Figure 1. Vertical profiling of a Java application.

application that needs to be profiled. The Java application together
with a number of Java libraries runs on top of a virtual machine.
The virtual machine translates Java bytecode instructions into na-
tive instructions. The binary instrumentation tool resides beneath
the virtual machine and tracks all native instructions executed by
the virtual machine. The key point of vertical profiling is that the
virtual machine informs the binary instrumentation tool whenever
an object is created, moved, or deleted; or a method is compiled, or
re-compiled; etc. The binary instrumentation tool then keeps track
of these high level events and associates native addresses to each
of those. As such, the binary instrumentation tool builds a verti-
cal profile by tracking low and high level events and by linking
them together. The binary instrumentation tool does not track sys-
tem calls. System calls are handled directly by the operating sys-
tem, and cannot be handled by the binary instrumentation tool. This
is a limitation for all instrumentation environments, unless the op-
erating system (and their system call implementations) would be
instrumented as well.
Implementing vertical profiling requires that both the virtual

machine and the binary instrumentation communicate with each
other. The following subsections discuss how this can be done in
practice.

2.1 Virtual machine instrumentation
The virtual machine needs to notify the binary instrumentation
tool upon the occurrence of various events. The events that are
being tracked determine the power of the vertical profiling method.
In our current setup the occurrences of the following events are
tracked in the virtual machine and are communicated to the binary
instrumentation tool:
• Class loading: When a new class is loaded and a new object
type becomes available, the new class name is communicated
to the binary instrumentor.

• Object allocation: When a new object is allocated, the object’s
type and memory location is communicated.

• Object relocation: When an object is moved by the garbage
collector, the object’s new location is communicated to the
instrumentor.

• Method compilation: When a method is compiled, its name,
memory location and a ‘code to line number’ map are com-
municated to the instrumentor.

• Method recompilation: When a method is recompiled, the
method’s location and ‘code to line number’ map are updated
in the binary instrumentation tool.

• Method relocation: When code is moved by the garbage collec-
tor, the code’s new location in memory is communicated.

2 2005/11/11



• Memory being freed during garbage collection: when memory
is freed, the address range of the free memory space is commu-
nicated to the binary instrumentor.
Note that this list of events being tracked by the virtual machine

is just an example list of events that could be tracked during vertical
profiling. Additional events could be defined and added to this list
if desired. We found though that this list of events was sufficient for
our purpose of analyzing the memory behavior of Java applications.
These events already allow for a powerful vertical profiling method
as will be shown in the remainder of this paper.

2.2 Dynamic binary instrumentation
A dynamic binary instrumentation tool takes as input a binary and
an instrumentation specification. The binary is the program of in-
terest; the instrumentation specification specifies what needs to be
instrumented in the binary. The dynamic binary instrumentor then
instruments the program of interest at run time. The binary instru-
mentation tool holds two copies of the same program under analy-
sis. One copy holds the original binary; the other copy holds the in-
strumented binary. All data memory references in the instrumented
binary refer to the original binary, i.e., the instrumented binary sees
the same data layout as the original binary. The instrumented bi-
nary is built as the program gets executed. Upon the first execu-
tion of a given piece of code, the instrumentor modifies the original
code according to the instrumentation specification and stores the
instrumented piece of code as part of the instrumented binary. By
executing the instrumented binary, the desired instrumentation then
is collected.
In order to be able to use dynamic binary instrumentation for

analyzing the execution of Java applications, the dynamic binary
instrumentation needs to be able to deal with self-modifying code.
Todays virtual machines optimize and re-optimize hot code while
executing an application. As such, the virtual machine frequently
writes code in memory. The binary instrumentation tool that is
tracking the virtual machine’s execution needs to be able to ac-
curately track this form of self-modifying code. The key problem
with dynamic binary instrumentation and self-modifying code is
that the code being executed is instrumented code and not the orig-
inal code. If the original code would have written itself, then the
instrumented code must produce the same result. The way self-
modifying code can be implemented in a dynamic binary instru-
mentation environment is by marking pages that contain instru-
mented code as “read-only” using the virtual memory subsystem
of the operating system. Subsequent writes to such pages then trig-
ger protection faults that are intercepted and handled without the
instrumented program noticing. The exception handler then flushes
the instrumented code in the given memory page. Subsequently,
writing to the memory page should be enabled temporarily and the
instrumentor then needs to re-instrument the code.

2.3 Collecting a vertical profile
In order to support vertical profiling, the dynamic binary instrumen-
tor needs to be able to handle events being tracked at the virtual
machine level. This is done through so called callbacks, method
calls generated by the virtual machine that are intercepted by the
binary instrumentor—we assume for now that the binary instru-
mentor is dynamically linked to the virtual machine, which is the
case in our setup as will be discussed later. A callback is a method
called by the virtual machine, say methodMwith a number of argu-
ments. Method M is a dummy method within the virtual machine.
However, the dynamic binary instrumentor intercepts this method
call and knows that a special action needs to be undertaken in case
method M gets called by the virtual machine. In fact, the dynamic
instrumentor replaces the execution of method M by the execution
of method M* for updating the internal bookkeeping of the vertical

instrumentor, i.e., the internal bookkeeping related to objects, ob-
ject types, methods, lines of code, classes being loaded, etc. Note
that the arguments to method M can be read by the instrumentor by
reading the arguments from the stack. This way, the callback in the
virtual machine effectively triggers an event in the dynamic binary
instrumentor. In order to implement vertical profiling we thus im-
plement a number of callbacks to communicate information from
the virtual machine to the binary instrumentor. For example, when
allocating an object, the VM executes a callback AllocateObject
with a number of arguments, namely the object type, its size and its
memory address. And we have similar callbacks when a class is
being loaded, when an object is being moved, or deleted, when a
method is compiled or re-compiled, etc.
The dynamic binary instrumentor then keeps track of address

ranges of the various methods and objects of interest and when-
ever a memory location is accessed, the binary instrumentor looks
within its internal data structures for the method or object corre-
sponding to the given address. The end result is that a vertical pro-
file can be collected.

2.4 DJ implementation
The vertical profiling framework as discussed in the previous sec-
tion is a general framework for vertical profiling. Any virtual ma-
chine could be employed in this framework and any dynamic bi-
nary instrumentation tool could be used as well. In our experimen-
tal framework, we use the Jikes RVM as our virtual machine and we
use DIOTA as our dynamic binary instrumentation tool. We refer to
our environment as the DJ (DIOTA-Jikes RVM) vertical profiling
framework.

2.4.1 Jikes RVM
The Jikes Research Virtual Machine [1] is an open source Java
virtual machine written almost entirely in Java. Jikes RVM uses
a compilation-only scheme (no interpretation) for translating Java
bytecodes to native machine instructions. In our experiments we
use the FastAdaptive profile: all methods are initially compiled
using a baseline compiler, and hot methods are recompiled using
an optimizing compiler.
Modifying the Jikes RVM to enable vertical profiling was done

very easily. We only had to insert around two hundred lines of code
(including comments) into the virtual machine in order to trigger
callbacks to the dynamic binary instrumentor. More specifically,
we added a callback to the class loader, to the object allocator, to
all garbage collectors when an object or code is being moved or
deleted, and to all compilers and optimizers when a method is being
compiled or optimized.
There is one particularity with instrumenting the virtual ma-

chine itself that needs special attention. Instrumentation cannot
be activated until the virtual machine is ‘ready’. This means that
there are some virtual machine methods and objects that cannot
be communicated to the binary instrumentation tool during virtual
machine startup. This can be solved by communicating these vir-
tual machine methods and objects as soon as the virtual machine is
‘ready’. From then on, the instrumentor intercepts methods and ob-
jects during the program execution. This allows for vertically pro-
filing the application as well as the VM.
Note that any virtual machine of interest could be used in a

vertical profiling framework as long as the virtual machine can be
augmented with callbacks which is not a problem for open-source
and in-house virtual machines.

2.4.2 DIOTA
The dynamic binary instrumtation tool that we use in our DJ ver-
tical profiling framework is DIOTA [10]. DIOTA stands for Dy-
namic Instrumentation, Optimization and Transformation of Ap-
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plications and is a dynamic binary instrumentation framework for
use on the Linux operating system running on x86-compatible pro-
cessors. Its functionality includes intercepting memory operations,
code execution, signals, system calls and functions based on their
name or address, as well as the ability to instrument self-modifying
code [9]. DIOTA is implemented as a dynamic shared library that
can be hooked up to any program. The main library of DIOTA con-
tains a generic dynamic binary instrumentation infrastructure. And
this generic instrumentation framework can be used by so-called
backends that specify the particular instrumentation of interest that
needs to be done.
The general operation of DIOTA is very similar to that of other

contemporary dynamic binary instrumentation frameworks such as
PIN [8] and Valgrind [11]. All of these operate in a similar way
as described in section 2.2. In fact, any of these dynamic binary
instrumentation tools could be used for implementing a vertical
profiling framework as long as self-modifying code is supported.

2.5 Discussion
2.5.1 Easy to setup
The key point of our vertical profiling approach is that only a
limited number of callbacks need to be implemented in the virtual
machine and supported in the binary instrumentor. And all the hard
work of instrumenting low level events is done by the dynamic
binary instrumentor. In addition, the dynamic binary instrumentor
needs to keep track of the mapping between high level concepts
such as methods, lines of code, objects, object types, etc. In fact,
setting up a vertical profiling environment from scratch is done
relatively easily. Our environment was set up within a few days
of programming in order to get Jikes RVM and DIOTA cooperate
in a vertical profiling environment.

2.5.2 Perturbation
When building a vertical profiling framework one has to be careful
that the dynamic binary instrumentor does not instrument the VM
code when the VM is computing the parameters for the callback
methods. Dealing with this issue carefully allows for collecting
highly accurate profiles, i.e., the binary instrumentor only instru-
ments pieces of code that would have been executed without any
vertical profiling support embedded in the VM.

3. Aspect-Oriented Instrumentation (AOI)
Once a vertical profiling framework is setup, we also need an easy-
to-use environment for building customized vertical profiling tools.
This paper proposes a novel approach to binary instrumentation
specification, namely aspect-oriented instrumentation (AOI), and
more in particular we propose vertical aspect-oriented instrumen-
tation which facilitates the construction of customized vertical pro-
filing tools.

3.1 Aspect-Oriented Programming
Aspect-oriented programming (AOP) [6] is best known in the con-
text of high level languages and software design methodologies,
ranging from UML [16] and AspectJ for Java [5] to AspectC++ for
C++ [14] to TinyC2 for C [17]. The basic idea of aspect oriented
programming originally came from the observation that not all
functionality in a programming model can be cleanly separated into
objects or modules. Some requirements crosscut entire class hier-
archies, multiple modules and complete programs. Aspect-oriented
programming allows for specifying a desired functionality that con-
cerns the whole program in a modular implementation.
Logging an application’s execution is one of the best known

examples. Implementing a logging facility in a traditional manner
without AOP requires that logging code is inserted in each and

every piece of code. This is both very time-consuming, error-prone
and in addition, hard to maintain from a software development
point of view. AOP on the other hand allows for extracting this
logging facility into a separate module, that is then woven by a
weaver with the rest of the program at compile time or even at run
time. AOP thus significantly improves software maintainability.
In general, an AOP language consists of joinpoints, pointcuts

and finally the advice. A joinpoint specifies where and when one
can interfere in the structure or execution of a program. This can
range from source code line numbers to syntactical constructions
to even run time events. A pointcut is a collection of joinpoints.
Typically, a symbolic name can be associated with a pointcut for
later reference. Finally, the advice is code that is associated with
a pointcut. The advice will be executed whenever the conditions
specified by the pointcut are fulfilled.

3.2 From AOP to AOI
The general idea of AOP languages of segregating crosscutting
concerns in separate modules, is also very much applicable to the
low level instrumentation of programs at the machine code level.
In fact, instrumenting a binary involves inserting additional code
across the entire program in order to measure a program metric
of interest. And the instrumentation can be completely segregated
from the original program. As such, aspect-oriented instrumenta-
tion (AOI) seems like a natural way for specifying binary instru-
mentation routines [12].
Nevertheless, low level instrumentation as done in all existing

binary instrumentation tools such as ATOM [15], PIN [8], Val-
grind [11], etc., all use an imperative way of specifying instrumen-
tation code. These tools basically scan every instruction and in-
strument it according to the instrumentation specification. And this
works perfectly fine for the purpose of low level instrumentation.
However, whenever vertical profiling is the focus, imperative

instrumentation no longer is a satisfying approach. For example,
tracking events concerning specific methods or objects is imprac-
tical to implement because the instrumentation specification (that
needs to be programmed by the end user) then needs to scan all
instructions in the binary in order to identify instructions belong-
ing to the method of interest or to identify references to objects
of interest, respectively. This is not a very efficient way of speci-
fying instrumentation functionality. AOI on the other hand, allows
for more easily specifying what actions need to be undertaken for
specific methods, lines of code, objects, and object types. The code
written under AOI does not require to scan all instructions to ver-
ify whether this instruction references an object but rather specifies
what special actions (advices) need to be undertaken for a method
of interest or an object of interest. As such, AOI is a much more nat-
ural way of expressing instrumentation functionality in the context
of vertical profiling.

3.3 The VAOMI language
The VAOMI (Vertical Aspect-Oriented Memory Instrumentation)
language that we propose in this paper is a domain-specific aspect-
oriented language developed specifically for the purpose of vertical
memory instrumentation in the context of an object-oriented lan-
guage. It combines support for recognising individual memory ac-
cesses with the notion of high level concepts such as objects, object
types, methods, lines of code, etc.
The grammar of the VAOMI language is displayed in Figure 2.

A joinpoint that describes an event in the VAOMI language consists
of a time qualifier followed by a memory event or an object event,
followed by the advice code. The time qualifier specifies when the
event should be triggered. This can be before or after the event
of interest. The events that can be triggered are memory events or
object events. For each of those, a number of parameters are given.
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time qualifier := before | after
params := location t const t * loc , type t const * type , void ** userdata
object operation := create (params) | copy (params, params) | delete (params)
object event := object:object operation
memory operation := read (params) | write (params) | access (params)
memory operation target := object | nonobject | any
memory event := memory operation target:memory operation
event := time qualifier memory event | object event {advice code}

Figure 2. The grammar of the VAOMI language.

struct mem_access_t {
int ip; /* instruction pointer */
int addr; /* memory address being accessed*/
int size; /* number of bytes accessed */
int ld_st; /* load or store ? */
int thread_ID; /* thread ID */

}

struct location_t {
struct mem_access_t *ma; /* pointer to

mem_access_t structure */
int method_ID; /* method ID */
char* method_name; /* method’s name */
int line_number; /* line number in given method */

}

struct type_t {
int type_ID; /* object class ID */
char* type_name; /* object class name */

}

Figure 3. Data structures provided as parameters in VAOMI.

These parameters can then be used by the advice code. The advice
code is the instrumentation code in C inserted by the end user.

3.3.1 Object events
An object event consists of the keyword object followed by an ob-
ject operation. The object operation can be the creation (create),
copying (copy) or deletion (delete) of an object.

3.3.2 Memory events
Amemory event consists of memory operation target and the mem-
ory operation itself. The memory operation target can be an object,
memory not belonging to an object or any of those. This allows
the end user to focus the instrumentation of memory accesses to
objects only, non-objects only, or to both objects and non-objects.
The memory operation specifies the type of memory access that
should be instrumented. This allows the end user to focus on reads,
writes or both.

3.3.3 Parameters
The parameters that are provided by the VAOMI language are
shown in Figure 3. These parameters can be used in the advice
code for driving the instrumentation. The first parameter is a data
structure that collects information concerning the ‘location’ of the
object or memory event. This is done in the location t structure.
The first element in this structure is a pointer to a mem access t
structure. This latter structure contains (i) the instruction pointer of
the native instruction performing the object or memory operation,
(ii) the object’s memory location or in case of a memory operation,
the memory location being accessed, (iii) the size of the object or in
case of a memory operation, the number of bytes accessed in mem-
ory, (iv) whether this memory access is a load or store operation—
note this has no meaning in case of an object operation, and finally
(v) the thread ID of the thread performing the object or memory
operation. The second and third element in the location t data

structure are the method ID and the method name performing the
object or memory operation, respectively. The fourth and final ele-
ment is the source code line number in the given method that cor-
responds to this object or memory operation.
The second parameter in the parameter list is a pointer to a data

structure that specifies information concerning the ‘type’ of the ob-
ject or memory operation. This type t structure holds a type ID
and a type name of the object or memory operation. This means
that for every object being created, copied, deleted or accessed, the
VAOMI language provides the end user with information concern-
ing the object’s type.
The third parameter in the parameter list (void **userdata)

allows the end user for maintaining object-specific information.
The end user may for example set up a data structure for a given
object; the pointer to this data structure can be stored through this
third parameter. The binary instrumentor then makes sure that this
same pointer is available for all object and memory operations that
refer to that same object.

3.3.4 VAOMI directives
The VAOMI language also comes with a number of directives
that can be specified at the beginning of the instrumentation
specification file. There are two directives in our current imple-
mentation, namely #requires method info and #requires
object info. The purpose of these directives is to improve the
performance, i.e., to reduce the overhead, of the vertical instrumen-
tation. The #requires method info directive informs the dy-
namic binary instrumentation tool that the method ID, the method
name and source code line number should be kept track of during
binary instrumentation. The #requires object info directive
informs the dynamic binary instrumentation tool that the object
type ID and the object type name should be kept track of. In a
VAOMI instrumentation specification, the user can decide not to in-
clude any of these two directives, to include only one of these, or to
include both directives. This will affect the amount of information
that can be gathered during vertical profiling as well as the amount
of overhead incurred due to the vertical profiling. For example, if
a user is interested in measuring the cache miss rate per method
and per source code line number, then there is no benefit in collect-
ing per-object information. The user can then use the #requires
method info to disable tracking object-related information dur-
ing the instrumentation run. This will limit the slowdown during
vertical profiling.

3.4 VAOMI and DIOTA
In order to be able to use VAOMI instrumentation specifications
with DIOTA, we also need a translator for converting the VAOMI
statements as specified in Figure 2 into C-statements while keeping
the advice code (that is written in C) untouched. The translated
instrumentation specification is then linked with DIOTA and the
Jikes RVM for running the vertical profiling.
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after any:write (location_t const *loc, type_t const *type, void **userdata) {
printf ("%p: W %p %d\n", loc->ma->ip, loc->ma->addr, loc->ma->size);

}

Figure 4. An example illustrating memory tracing instrumentation.

0: #requires object_info

1: after object:access (location_t const *loc, type_t const *type, void **userdata) {
/* compute whether this object reference is a cache miss or not */

2: hit = simulate_memory_access (loc->ma->addr, type->type_ID);
/* update the per-type hit/miss information */

3: update_per_type_miss_rate (type->type_ID, hit);
4: }

5: after nonobject:access (location_t const *loc, type_t const *type, void **userdata) {
/* update the simulated cache content */

6: simulate_memory_access (loc->ma->addr, -1);
7: }

Figure 5. An example illustrating a per object-type cache miss rate vertical profiling specification.

3.5 Examples
We now illustrate the power of expressiveness of the VAOMI lan-
guage through a couple of examples.

3.5.1 Example 1: Tracing memory writes
Our first example, see Figure 4, shows a memory tracing instrumen-
tation specification. This instrumentation will capture all writes in
the program code and will report the write’s instruction pointer,
memory address and size. As can be seen from this example, the
VAOMI language is a very powerful binary instrumentation lan-
guage. The expressiveness is high while the code itself is very in-
tuitive. Compared to an imperative instrumentation specification
languages, aspect-oriented instrumentation clearly is a more nat-
ural way of expression. Note that this example however does not
illustrate the idea of vertical profiling. This is shown in our second
example.

3.5.2 Example 2: Collecting object-type specific cache miss
rates

The second example shown in Figure 5 illustrates the vertical
profiling ability of the VAOMI language. The goal of this second
instrumentation example is to collect cache miss rates per object
type. This could be a useful application for a software developer
when optimizing the memory behavior of a given application of
interest. Line 0 specifies that the instrumentation needs to focus on
per-object information only. Upon a memory access to an object
(lines 1-4), the memory address is used by the cache simulator
to update the cache’s state and to update the type-specific data
structure maintained by the instrumentor to keep track of the per-
type miss rate. Memory accesses to other non-objects (lines 5-
7) update the cache’s state only and do not update per-type miss
rate information because these memory references do not originate
from object accesses.

4. Evaluation
Before presenting a number of applications for our vertical pro-
filing framework, we first evaluate the overhead that comes from
vertical profiling.

4.1 Experimental setup
We consider the SPECjvm98 benchmark suite1, see Table 1, which
is a client-side Java benchmark suite consisting of seven bench-
marks. We run all SPECjvm98 benchmark with the largest input

1 http://www.spec.org/jvm98/

Benchmark Description
jess An expert shell system solving a set of puzzles
db Makes database requests to a memory reisdent database
javac Compiles Java to bytecode
mpegaudio Decompresses MPEG-3 audio files
mtrt A dual-threaded raytracer
jack A Java source code parser generator

Table 1. The SPECjvm98 benchmarks used in this paper.
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Figure 6. Slowdown due to vertical profiling.

set (-s100). These benchmarks are run on the Jikes RVM using a
64MB heap and the generational mark-sweep GenMS garbage col-
lector. And we run the DJ system on all of these benchmarks on a
2.8GHz Intel Pentium 4 system with a 512MB L2 cache and 1GB
main memory. The operating system on which we run our experi-
ments is Linux 2.6.10.

4.2 Overhead from vertical profiling
In order to quantify the overhead of vertical profiling we consider
the following scenarios.
• The first secnario measures the execution time for these bench-
marks on the Jikes RVM without any dynamic binary instru-
mentation.

• The second scenario measures the execution time when running
DIOTA underneath the Jikes RVM. In this scenario, DIOTA in-
struments all memory operations with an empty instrumentation
routine. In addition, vertical profiling is disabled; none of the
VAOMI directives was being set. This is to quantify the inher-
ent overhead of dynamic binary instrumentation using DIOTA.
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• The third scenario measures the execution time when running
DIOTA underneath the Jikes RVM while enabling vertical pro-
filing that only considers method-related information, i.e., the
VAOMI directive #requires method info was set.

• The fourth scenario measures the execution time when enabling
vertical profiling for measuring object-related information. The
VAOMI directive #requires object info was set.

• The fifth scenario measures the execution time for vertical pro-
filing when both method-related and object-related informa-
tion is kept track of. Both the #requires method info and
#requires object info directives are set.

Figure 6 shows the slowdown for each of the above scenarios
compared to the baseline scenario, i.e., the first scenario. The in-
herent slowdown of dynamic binary instrumentation using DIOTA
(scenario 2: ‘DIOTA’) varies from 11X to 94X. Recall this scenario
does not incur any vertical profiling. The variation in slowdown
from benchmark to benchmark comes from a number of sources:
the number of indirect jumps, the amount of code being compiled
and (re-)optimized by the virtual machine, etc. Comparing scenar-
ios 3 thru 5 to scenario 2 quantifies the overhead due to vertical
profiling. The average vertical profiling overhead varies between a
factor 3.8X to 6.8X depending on what information is to be kept
track of. Scenario 5 (‘DIOTA method + object’) quantifies the to-
tal overhead for VAOMI; and this incurs an average slowdown of a
factor 6.8X. However, when making use of the VAOMI directives,
see scenarios 3 ‘DIOTA method’ and 4 ‘DIOTA object’, significant
reductions in overhead are obtained, i.e., the average slowdown for
scenarios 3 and 4 is only a factor 3.8X and 4X, respectively, com-
pared to the 6.8X average slowdown for scenario 5. Note that these
numbers were obtained from an implementation that was not opti-
mized for speed; future work will study how to reduce the overhead.

5. Applications
We now discuss two example applications for vertical profiling
through dynamic binary instrumentation.

5.1 Vertical cache simulation
The first application relates cache miss rates to high level concepts
such as methods, source code lines, objects and object types. This
could be invaluable information for software developers that are in
the process of optimizing their code for memory performance. As is
well known, the increasing gap in memory speed versus processor
speed is an important problem in current computer systems. Poor
memory behavior can severely affect overall performance. As such,
it is very important to optimize memory performance as much as
possible. Vertical profiling could be a very valuable tool for hinting
the software developer where to focus on when optimizing the
application’s memory behavior.
Doing a vertical cache simulation requires that an instrumen-

tation specification be written along the lines of the example dis-
cussed in section 3.5.2. In fact, the vertical instrumentation specifi-
cation that we have written for this application extends the example
from section 3.5.2 by also measuring cache miss information per
method, per source code line, per object and per object type. We
assume a 4-way set-associative 32KB 32-byte line L1 cache and an
8-way set-associative 1MB 128-byte line L2 cache. Both caches are
write-back, write-allocate caches. The total instrumentation speci-
fication for this application was no more than 200 lines of code,
including comments. The output of the profiling run is a table de-
scribing cache miss rates per method, per line of code, per object
and per object type.
Selecting the per-method cache miss rates and sorting them by

decreasing number of L2 misses results in Table 2. Likewise, se-

lecting the per object-type miss rates and sorting them by decreas-
ing number of L2 misses results in Table 3. The method names and
object types specifications in these tables are given using the Java
method and field descriptor notation2. In both tables we limit the
number of methods and object types to the top five/three per bench-
mark in order not to overload the tables. The first column in each of
both tables mentions the method or object type, respectively. The
second column shows the percentage of memory references of the
given method or object type as a percentage of the total number of
memory references. The two rightmost columns show the number
of L1 and L2 misses, respectively, along with the procentual miss
rates. The software developer can use these tables to better under-
stand the memory behavior of his application of interest and could
even use this information for guiding memory optimizations at the
source code level. For example, from Table 2 it is apparent that the
shell sort method in db is a method that suffers heavily from
poor cache behavior. 20% of memory references in db occur within
the shell sort method. Of these memory references, 10.5% re-
sult in an L1 cache miss, and 31.7% of the L2 cache accesses are
cache misses. As such, this method is definitely a method of con-
cern to a software developer that strives at optimizing the memory
performance of db. From Table 3 which shows per object type miss
rates, we clearly observe that db suffers for a poor cache behavior.
And this poor cache behavior seems to be apparent across a number
of object types. For example, this table shows that the cache behav-
ior for the Vector class is relatively poor with an L1 miss rate of
11.4% and an L2 miss rate of 38.6%. Note that our framework also
allows for going even one step further, namely tracking down miss
rates to individual objects. This would allow the software developer
to really nail down the root cause of the poor memory behavior. We
do not include an example of per-object miss rates in this paper
because of space constraints, however, this could be easily done in
DJ.
Since the shell sort method in db seems to suffer the most

from poor cache behavior, we therefore focus on that method now.
Figure 4 shows the shell sortmethod annotated with cache miss
information, i.e., L1 and L2 cache miss rates are annotated to each
line of code. Line 13 seems to be the primary source for the high
cache miss rate in the shell sort method. The reason is that the
j+gap index results in a fairly random access pattern into the 61KB
index array. It’s interesting to note that also Hauswirth et al. [4]
identified the shell sort method as a critical method for db.

5.2 Object lifetime
Our second example application is different from the previous ap-
plication in the sense that it goes beyond vertical profiling. In fact,
our second application is not vertical profiling at all, however, ver-
tical profiling makes it very easy to compute. The purpose of this
second application is to measure the distribution of object lifetimes.
In this application we define the object lifetime as the number of
memory accesses between the creation and the last use of an object.
Knowing the allocation site and knowing where the object was last
used can help a programmer to rewrite the code in order to reduce
the memory consumption of the application or even improve over-
all performance [13]. Computing object lifetimes within a virtual
machine is fairly complicated. First, the virtual machine needs to
be extended in other to be able to store the per-object lifetime in-
formation. Second, one needs to be careful so that the computed
lifetimes do not get perturbated by the instrumentation code. Fi-
nally, all object references need to be traced. This is far from trivial
to implement. For example, referencing the object’s header is re-
quired for accessing the Type Information Block (TIB) or vtable

2 See http://java.sun.com/docs/books/vmspec/
2nd-edition/html/ClassFile.doc.html
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Method Accesses DL1 misses DL2 misses
201 compress
Compressor.compress()V 45.4% 131324549 (7.7%) 553630 (0.4%)
Decompressor.decompress()V 45% 22492318 (1.3%) 504536 (2%)
Input Buffer.readbytes([BI)I 1.5% 239804 (0.4%) 45149 (16%)
Compressor.output(I)V 3.1% 174822 (0.1%) 30962 (14.5%)
Output Buffer.putbyte(B)V 0.4% 41291 (0.3%) 9365 (19.2%)
213 javac
Assembler.add(IILjava/lang/Object;)V 0.1% 147763 (2.4%) 35774 (17.1%)
CompoundStatement.check(LEnvironment;LContext;JLjava/util/Hashtable;)J 0% 214716 (14%) 31256 (11.4%)
CompoundStatement.code(LEnvironment;LContext;LAssembler;)V 0% 112464 (7.6%) 26769 (16.8%)
Instruction.<init>(IILjava/lang/Object;)V 0.1% 100472 (3.5%) 24400 (17.2%)
MethodExpression.codeValue(LEnvironment;LContext;LAssembler;)V 0.1% 135576 (5.6%) 22701 (11.9%)
228 jack
TokenEngine.getNextTokenFromStream()LToken; 0.9% 165627 (0.4%) 12395 (5.4%)
JackConstants.printToken(LToken;Ljava/io/PrintStream;)V 0% 20506 (1.1%) 4479 (12.4%)
Token.<init>()V 0% 15922 (2.9%) 3417 (13.3%)
TokenProcessor.action(LExpansion;)V 0% 6008 (2.8%) 2553 (30.2%)
RunTimeNfaState.Move(CLjava/util/Vector;)I 1% 291042 (0.6%) 2339 (0.5%)
209 db
Database.shell sort(I)V 20% 135319325 (10.5%) 51963973 (31.7%)
Entry.equals(Ljava/lang/Object;)Z 1.1% 3255051 (4.7%) 1704774 (37.5%)
Database.set index()V 2% 3917030 (3.1%) 1375240 (29.3%)
java.lang.Math.exp(D)D 0% 76117 (15.2%) 20428 (21.4%)
Database.read db(Ljava/lang/String;)V 0.3% 36671 (0.2%) 9152 (13.2%)
227 mtrt
OctNode.FindTreeNode(LPoint;)LOctNode; 2.8% 31430193 (14.2%) 518924 (1.5%)
OctNode.Intersect(LRay;LPoint;F)LOctNode; 4% 2387161 (0.7%) 167294 (6.3%)
PolyTypeObj.Intersect(LRay;LIntersectPt;)Z 0.9% 1683485 (2.2%) 163874 (8.9%)
Face.GetVert(I)LPoint; 2.9% 6756582 (2.9%) 82909 (1.1%)
TriangleObj.Check(LRay;LIntersectPt;)Z 0.4% 893340 (2.6%) 68419 (7%)
202 jess
jess.Node2.appendToken(Ljess/Token;Ljess/Token;)Ljess/Token; 0.9% 6031682 (7.8%) 415968 (5.3%)
jess.Value.<init>(DI)V 0.2% 802707 (5.4%) 175974 (16.3%)
jess.RU.getAtom(I)Ljava/lang/String; 0.4% 547909 (1.7%) 79528 (11.1%)
jess.Node2.findInMemory(Ljess/TokenVector;Ljess/Token;)Ljess/Token;G 0.3% 3256222 (12.6%) 26655 (0.6%)
jess.Value.<init>(II)V 0% 120408 (8.2%) 20855 (13.2%)
222 mpegaudio
ub.(Lg;)Z 0.6% 633310 (0.7%) 1876 (0.2%)
ab. G(I)V 0.4% 109056 (0.2%) 660 (0.4%)
d.I([III[FI)V 0.9% 2800721 (2.5%) 634 (0%)
q.l([SI)I 12.7% 5665501 (0.3%) 547 (0%)
kb. A()V 0% 74273 (4.6%) 458 (0.4%)

Table 2. The top 5 methods for each of the benchmarks sorted by the number of L2 cache misses.

Method Accesses DL1 misses DL2 misses
201 compress
[B 24.3% 13348183 (1.6%) 1039633 (6.9%)
[I 9.8% 100511389 (29.2%) 58637 (0.1%)
[S 5.3% 42087558 (22.8%) 56860 (0.1%)
213 javac
LInstruction;)I 0.5% 1825299 (7.7%) 82839 (3.1%)
LFieldExpression;)I 0.2% 287260 (3.9%) 52025 (13.2%)
LIdentifierExpression; 0.2% 359046 (4.5%) 46310 (9.5%)
228 jack
LToken; 0% 96932 (3.7%) 19864 (12.3%)
[I 1.5% 333571 (0.4%) 4007 (0.8%)
[J 0.1% 19210 (0.2%) 2529 (8%)
209 db
Ljava/util/Vector; 4.5% 36870413 (11.4%) 17417400 (38.6%)
[Ljava/lang/Object; 2.1% 24912124 (16.3%) 12237002 (41.4%)
[C 3.5% 23546444 (9.3%) 12051169 (42.4%)
227 mtrt
LVector; 1.2% 3558819 (3.5%) 430804 (11%)
LPoint; 2.3% 14922491 (7.8%) 351819 (2.1%)
[LPoint; 0.8% 10892416 (16.3%) 118231 (1%)
202 jess
[Ljess/ValueVector; 1.2% 5438243 (5%) 314799 (4.4%)
Ljess/Value; 0.8% 3733484 (5.3%) 216368 (4.5%)
Ljava/lang/Integer; 0.1% 239721 (2.7%) 48924 (15.3%)
222 mpegaudio
[S 0.6% 2474016 (2.8%) 1971 (0.1%)
[F 12.8% 11833257 (0.6%) 1814 (0%)
[B 12.9% 1344543 (0.1%) 1299 (0.1%)

Table 3. The top 3 objects types for each of the benchmarks sorted by the number of L2 cache misses.
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Source code DL1 accesses DL1 misses DL2 accesses DL2 misses
1 void shell sort(int fn) {
2 int i, j, n, gap;
3 String s1, s2;
4 Entry e;
5
6 if (index == null) set index(); 67 0 (0%) 0 0 (0%)
7 n = index.length; 134 1 (0%) 1 0 (0%)
8
9 for (gap = n/2; gap > 0; gap/=2) 938 0 (0%) 0 (0%)
10 for (i = gap; i < n; i++) 12276499 910 (0%) 1083 3 (0%)
11 for (j = i-gap; j >=0; j-=gap) { 23064743 8179 (0%) 9615 33 (0%)
12 s1 = (String)index[j].items.elementAt(fn); 157553557 29772665 (19%) 36551726 6095594 (17%)
13 s2 = (String)index[j+gap].items.elementAt(fn); 157553557 24036992 (15%) 29456752 15581062 (53%)
14
15 if (s1.compareTo(s2) <= 0) break; 45015302 128 (0%) 153 1 (0%)
16
17 e = index[j]; 32322537 219 (0%) 228 0 (0%)
18 index[j] = index[j+gap]; 75419253 2654 (0%) 3228 811 (25%)
19 index[j+gap] = e; 43096716 0 (0%) 0 0 (0%)
20 }
21 fnum = fn; 67 61 (91%) 73 61 (84%)
22 }

Table 4. The shell sort method from db annotated with cache miss information. The number of L1 and L2 misses here differ from the
numbers given Table 2; the reason is that the numbers in this table were obtained using the baseline compiler whereas the numbers in Table 2
were obtained using the adaptive compiler.
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Figure 7. Cumulative object lifetime distribution per benchmark.

on a method call, for knowing the object’s type, for knowing the
array’s length, etc. Also, accesses to objects in native methods in
the VM or Java standard libraries need to be hand-instrumented.
Tracking all these object references is hard to implement in a virtual
machine. In addition, it is very time consuming and error-prone.
Measuring the object lifetime within DJ on the other hand is very
easy to do and in addition, it is very accurate because it allows for
tracking all references to a given object. In a VAOMI specification,
an object’s lifetime can be computed and stored using the per-object
void **userdata parameter that is available in VAOMI, see sec-
tion 3.3. As such, computing object lifetimes is very straightfor-
ward to do in VAOMI—no more than 50 lines of code.
Figure 7 shows the lifetime distribution for the various bench-

marks computed using the DJ system. The X axis on these graphs
is given on a log2 scale; the Y axis shows the cumulative percent-
age objects in the given lifetime bucket. We observe that the object
lifetimes are fairly small in general, i.e., most objects are short-
lived objects. For most benchmarks, the object lifetime typically is
smaller than 16 memory accesses between the creation of an object
and its last use. Some benchmark have a relatively larger object
lifetime, see for example javac, compress and mpegaudio, how-

ever the object lifetime is still very small in absolute terms, i.e., the
object lifetime is rarely more than 64 memory accesses.

6. Related work
6.1 Instrumentation and profiling
A large body of work exist on instrumentation. A number of static
instrumentation tools have been proposed such as ATOM [15] and
EEL [7]. Static instrumentation cannot be used for analyzing Java
applications because it cannot deal with dynamically generated
code. Dynamic instrumentation on the other hand does not have
that limitation.Well known examples of dynamic binary instrumen-
tation frameworks are Valgrind [11], PIN [8] and DIOTA [10, 9].
In case self-modifying code is supported within the dynamic instru-
mentation tool, it can be used for vertically profiling Java applica-
tions.
One specific tool within the Valgrind’s tool set is cachegrind

which is a cache profiler that provides limited vertical profiling
capabilities. Cachegrind is able to map cache miss rates to lines
of source code and methods written in imperative programming
languages. However, cachegrind is unable to vertically profile Java
applications, nor is it capable of mapping cache miss rates to
objects or object types. In addition, the DJ system is much more
flexible and allows for a broader use than just cache profiling.
In fact, VAOMI allows for building customized vertical memory
profiling tools.

6.2 Vertically profiling Java applications
Some recent work focused on vertical profiling of Java applictions.
Hauswirth et al. [4] presented a vertical profiling approach that cor-
relates hardware performance counter values to manually inserted
software monitors in order to keep track of the program’s execu-
tion across all layers. The low level and high level information is
collected at a fairly coarse granularity, i.e., hardware performance
counter values and software monitor values are measured once per
time slice. There are two important limitations with this approach.
First, aligning traces is challenging and caution is required in or-
der not to get out of sync [3]. Our framework does not require ex-
plicit alignment. Second, the granularity is very coarse-grained—
one performance number per time slice. This allows for analyzing
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coarse-grained performance variations but does not allow for ana-
lyzing fine-grained effects as we target.
Georges et al. [2] also provided a limited form of vertical pro-

filing by linking microprocessor-level metrics obtained from hard-
ware performance counters to method-level phases in Java. This
allows for analyzing Java applications at a finer granularity than
the vertical profiling approach by Hauswirth et al. [], however, the
granularity is still much more coarse-grained than the granularity
that we can achieve in DJ.
The commercially available tool VTune from Intel also allows

for profiling Java applications. The VTune tool samples hardware
performance counters to profile an application and to annotate
source code with cache miss rate information. However, given the
fact that VTune relies on sampling it is questionable whether this
allows for fine-grained profiling information with little overhead
and perturbation of the results.
Note that all of these vertical profiling approaches rely on hard-

ware performance counters which limits the scope of these tech-
niques to evaluating performance on real hardware. Vertical pro-
filing through dynamic binary instrumentation on the other hand,
allows for developing customized vertical profiling tools.

7. Summary and future work
Virtualization complicates the understanding of programs being ex-
ecuted on top of the virtualization software. In this paper, we pro-
posed vertical profiling through dynamic binary instrumentation for
analyzing Java applications that run on a virtual machine. We pro-
posed a callback mechanism for communicating high level infor-
mation (related to objects, methods, etc.) from the virtual machine
to the dynamic binary instrumentor; this enables the instrumentor
to build a vertical profile. The important benefit is that only a few
changes need to be made to the VM for enabling vertical profiling.
In addition, we also proposed aspect-oriented instrumentation and
the VAOMI language for expressing vertical instrumentation spec-
ifications in a natural and convenient manner. Finally, we demon-
strated the DJ vertical profiling environment that is built around
Jikes RVM and DIOTA. In conjunction with the VAOMI language,
the DJ system allows for building customized vertical instrumenta-
tion tools for analyzing memory behavior in Java applications. The
overhead of vertical profiling compared to dynamic instrumenta-
tion was quantified to vary between 3.8X and 6.8X depending on
what needs to be instrumentated. And we demonstrated the appli-
cability of the DJ system for two applications: vertical cache miss
profiling and object lifetime computation. The main benefits of ver-
tical profiling through aspect-oriented dynamic binary instrumen-
tation is that profiling is both efficient to implement and in addition
is highly accurate. If this paper gets accepted, the DJ system will
be made publicly available.
In future work we plan to further extend the DJ system and the

VAOMI language in order to enable vertical profiling of all aspects
of a Java application. Our current work focused on memory behav-
ior; in future work, we will extend DJ and VAOMI to also profile
other program characteristics such as control flow behavior, and
instruction-level parallelism. In addition, we also plan to optimize
the DJ system in order to reduce the overall slowdown during ver-
tical profiling.
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