
Automatic Concurrent Debugging Via Minimal Program Mutant
Generation with AspectJ

Shady Copty Shmuel Ur
IBM, Haifa Research Labs
{shady,ur}@il.ibm.com

Abstract
Debugging is one of the most time consuming activities in program
design. Work on automatic debugging has received a lot of attention
and there are a number of symposiums dedicated to this field.
The starting point of automatic debugging is that there exists a
situation in which a test fails and another where a test succeeds. For
example, in one version of the program the test fails and in another
it succeeds, or with one scheduler the test fails but succeeds with
another. Automatic Debugging searches for the smallest difference
which causes the failure. This condition is very useful in identifying
and fixing the root cause of the bug.

A new testing method instruments concurrent programs with
schedule-modifying instructions to reveal concurrent bugs. The
idea is to increase the probability that concurrent bugs (races, dead-
locks) will appear. This paper discusses integrating this new testing
technology and automatic debugging. Instead of just showing that
a bug exists, we can pinpoint its location by finding the minimal set
of instrumentations that reveal the bug.

In addition to explaining a methodology for this integration, we
show an AspectJ based implementation. We discuss the implemen-
tation in detail as it both demonstrates the advantage of open source
tools, in their adaptability to change, and how our specific change
can be used for other testing tools.

1. Introduction and Motivation
The increasing popularity of concurrent Java programming—on
the Internet as well as on the server side — has brought the issue
of concurrent defect analysis to the forefront. Concurrent defects,
such as unintentional race conditions or deadlocks are difficult and
expensive to uncover and analyze, and such faults often escape to
the field. Production of mutli-core processors is another trend that
focuses on testing and debugging of multi-threaded application in
the client space. As a result, commercial enterprises such as Intel,
IBM, and Microsoft are giving increased attention to developing
methodologies and tools for this domain.

Much research has been done on testing multi-threaded pro-
grams. Research has examined data races detection [18], [19], [14],
replay in distributed and concurrent contexts[4], static analysis
[21] [13] [7], and the problem of generating different interleav-
ings for the purpose of revealing concurrent faults [8] [22]. Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

checking [20], coverage analysis [17] [9][3], and cloning [12] are
also techniques being to improve testing in this domain.

In a previous paper [6], we demonstrated how to implement a
ConTest-like tool using AspectJ. Using 12 lines of AspectJ, we
created a testing tool that is useful in finding concurrent bugs.
This testing tool works by instrumenting all locations that access
global variables with randomly executed sleep statements. When
we wanted to implement the full range of ConTest features, we
found that AspectJ was missing some features. Because AspectJ is
open source, we claimed that user can add the features themselves
without waiting for a version that contain them.

In this paper, we describe our work on a new debugging tool
that is based on noise creation testing technology. Our tool looks
for the minimal set of noise that contain instrumentation that will
reveal the bug. The idea is that if you can find one, or several,
locations where the instrumentation of noise will reveal the bug,
the description of these locations will be very useful to developers.
As expected, our experiments found that the knowledge of where a
thread switch will cause a bug to manifest is valuable in debugging.

The implementation and the motivation for our tool are similar
to that expressed in a thread of papers on delta debugging [5].
[23] [24]. In these papers, a set of program changes was used to
induce a bug, with the goal of finding a minimal subset. The set
of changes used came from the difference between two program
versions: the old one that works and the new one that contains a
bug. In this paper, the set of changes that induces bugs is calculated
automatically using testing instrumentation technology and is not
related to user program changes. Due to the different requirements,
we implement a slightly different delta debugging algorithm using
AspectH and explain its advantages. The implementation entails
the writing of aspects and the tools code along with a modification
of AspectJ.

This paper has three contributions. The first shows that the com-
bination of a delta debugging technique and testing via noise gen-
eration yields a practical concurrent debugging technique. The sec-
ond is a new delta debugging algorithm which, in some scenarios,
is better than those found in the literature. The third is the actual
implementation, which includes modifications to AspectJ that can
be applied to other applications.

2. Related work
Debugging is one of the most common activities in the development
of computer programs and a lot of thought has been given to
its automation. In concurrent programming, one of the domains
studied, execution of the same test may sometimes fail and in
others succeed. In [5], delta-debugging was used to find places
in the interleaving that were indicative of failure. These locations
were identified using a replay tool called DEJAVU, used on a
special deterministic JVM. In regression testing a new version of

the program is examined to see if it contain bugs. Once a test
find a bug, the goal of automatic debugging is to find a minimal
subset of the changes required to produce the bug. An example
of this can be seen in [23] where there are two versions of the
program, one that works and another that has a bug. The difference
between these programs is 178,000 lines of code. Using delta
debugging, they automatically found the single line that caused
the bug. Similar ideas are used in another domain where input is
reduced to the minimum required to display the bug [24]. This is
useful in reducing the number of bug reports (a few may be reduced
to the same minimum) and for understanding the core requirement
of this bug. The algorithms used in these applications can be found
in [23] and can be used to find a group of changes, provided that
monotonicity and consistency are guaranteed. This will generally
be a problem when testing multi-threaded applications, once the
execution of the same test may give different results. This problem
can be avoided by using replay on a deterministic JVM.

The testing of multi-threaded applications by inserting schedule
modifying statements ”noise”, such as sleep and yield, has been
studied [8] [22]. This is an effective technique for finding out
whether a bug exists, but does not look for the root cause of the
bug. Studies have been done to find the correct point at which to
insert noise [2]. These studies found that noise in many places is
not as effective in finding bugs as inserting noise in a few correct
places. This means that too much noise may mask the bug, or that
the problem is non-monotonic using the definitions of [23].

Studies on bug patterns in multi-threaded programs [11][16] re-
veal that most bug patterns can be exposed using very few instru-
mentation points, sometimes even one. However the noise instru-
mented must be be non-deterministic, i.e., noise that does not im-
pact the interleaving every time it is executed. This requirement
means the testing must check whether the noise is in the correct
place and is itself non-deterministic, since sometimes, even if the
noise is in the correct place, it will fail to produce the bug.

We implemented our work using AspectJ, an aspect-oriented ex-
tension to Java. With just a few new constructs, AspectJ can extend
Java to provide support for the modular implementation of a range
of cross-cutting concerns. Dynamic crosscutting makes it possi-
ble to define additional implementations that run at certain well-
defined points in the execution of the program. Static crosscutting
makes it possible to define new operations on existing types. Dy-
namic crosscutting in AspectJ is based on a small but powerful set
of constructs: join points are well-defined points in the execution
of the program; pointcuts are a means of referring to collections
of join points and certain values at those join points; advice are
method-like constructs used to define additional behavior at join
points; and aspects are units of modular crosscutting implemen-
tation, composed of pointcuts, advice, and ordinary Java member
declarations. We use dynamic crosscutting to implement the fea-
tures of ConTest using AspectJ, in a manner similar to that used by
the ConTest instrumentor. [15]

In AspectJ, pointcuts pick out certain join points in the program
flow. For example, the pointcut call(void Point.setX(int)) picks out
each join point that is a call to a method with the signature void
Point.setX(int) (i.e., Point’s void setX method with a single int
parameter). A pointcut can be built out of other pointcuts with:
and, or, andnot. [1] AspectJ also lets you define pointcuts using
wildcards. For example, set(* *) defines all the assignments to all
the variables in the program. Pointcuts pick out join points, but they
don’t do anything else.

We use advice To implement crosscutting behavior. Advice
brings together a pointcut to pick out join points and a body of code
to run at each of those join points. AspectJ has several different
kinds of advice. ‘Before advice’ runs as a join point is reached,
before the program proceeds with the join point. ‘After advice’ runs

after the program proceeds with that join point. ”Around advice” on
a join point runs as the join point is reached [1]. The pointcut and
the advice type definewherethe instrumentation is done and the
advice body defineswhatwill actually be instrumented.

3. Algorithms
This section describes the algorithms we use to find the minimal
amount of instrumentation needed to uncover the bug. First, we
have to deal with the fact that the bugs are not deterministic. If exe-
cution succeeds (i.e., found the bug), it does not necessarily means
that the instrumentation is in the correct location since it would be
found anyway with some probability. When execution fails to find
the bug, it does not necessarily mean that the instrumentation is not
in the correct place for two reasons. As discussed earlier, the instru-
mentation must be activated with probability, and in this execution
it may have been activated at the wrong time or not activated at all.
Additionally, there may have been other thread switches in places
that were not instrumented, which masked the bug. We deal with
each of these problems separately. The tests we chose for debug-
ging are those in which we find bugs by inserting noise but do not
find bugs if we do not add noise. The advantage of looking only at
such tests is that there is only a small likelihood the test will find
the bug if the instrumentation is in the wrong place. The disadvan-
tage of the approach is that ”easy” bugs, that appear even when no
noise is used cannot be automatically debugged. We do not have a
solution for the numerous cases where the appearance of the bug is
common, but finding the root cause of the bug is hard. We address
the fact that even correct instrumentation may not produce the bug
every time by running each test multiple times and seeing if the
bug appears in any of the executions. The number of times the test
must be executed depends on how well the bug is hidden and can
be fine-tuned when the bug is found. From our experience, between
10 and 30 executions is usually sufficient.

Let s1, s2...sn ∈ S be the set of possible program changes.
Program changes are selected such that each change may reveal
an existing bug but will not create a new bug in the program.
Such changes have to be carefully implemented and the theory and
practice of how such changes can be applied to Java programs may
be seen in [8] [22]. It is possible that a change, denoted as a bad
change, will hide an existing bug. If ’bad changes’ exist finding a
minimal set of changes becomes more difficult. The work we are
currently doing shows that this is very likely. A problem is called
monotonic if, for every set that finds bugs, all its supersets also find
bugs [23]. The existence of interrelations between instrumentations
may cause our problem to be non-monotonic.

A very important issue is the expected size ofF - the minimal
group of changes needed to reveal a bug. Studies on bug patterns
[11][16] have shown thatF will generally be very small and will
often be a singleton. Finding a singleton is very easy. The simplest
algorithm we use creates|n| mutations of the program, each with a
single change, and then checks which mutation finds the bug. The
advantages of this trivial algorithm are its simplicity and the fact
that it is oblivious to the existence of bad changes. One disadvan-
tage is its complexity, as the number of possible changes is linear
in S. The number of changes from which we select is dominated
by the number of accesses to global variables in the files that con-
tain synchronization elements; this thurs out to be approximately
the number of lines of code divided by five. The second disadvan-
tage is that this algorithm will only work if the set of changes is a
singleton. If more than one change is necessary, this algorithm will
fail.

To alleviate the complexity problem, a second algorithm was
implemented to perform a search. In order to search, we need
to perform queries on sets of elements. We use queryQ, which

receivess ⊂ S and returns Yes ifF ⊂ s and No otherwise (i.e.,
∃x ∈ F, x /∈ s)

At each stage in this algorithm, we apply half of the remaining
changes. If a bug is found, we continue with that half, and if not
with the other. The complexity of this algorithm islog(n), which
is very good; however, it is still limited to a singleton solution. If
the problem is non-monotonic, the search algorithm may not work.

We set out to devise an algorithm that looks for sets, and is op-
timized to search for small sets, as we expect most of the solutions
to be small. Another good property for the algorithm is that every
query has a relatively small number of changes. This property is de-
sirable for efficiency, as every instrumentation has costs in runtime
and accuracy. We know from experiments [2] that a program with
a lot of instrumentation is less likely to exhibit the bug than a pro-
gram that uses less instrumentation but has it in the correct places.
Having less instrumentation is also beneficial from a performance
point of view. Due to the existence of bad instrumentation, and the
non-monotonicity of the problem, the less instrumentation we have,
(as long as we have the right one) the less likely we are to face these
problems.

Delta Debugging (DD) is a well known algorithm used to search
for sets of changes. The DD algorithm suggested in [23] works
as follows: you start with two setsc ⊂ c′, such that the program
works with c and does not work withc′. We start withc as the
empty set andc′ as the full set of changes that finds the bug. We
then roughly divide the changes inc′ in two. If testing with the first
part yields the bug, continue recursively with that part. If not, try
the second part; if that yields the bug continue recursively with the
second part. If not, we know that a subset of the solution is in the
first part and a subset is in the second part. Continue recursively
searching the first part, while implementing all the changes that
belong to the second. At the same time, search the second part while
implementing all the changes to the first. The minimal solution is
the union of the two searches. Figure 1(a) [23] describes the search
for a minimal subset using this algorithm. Aside from being very
simple and proven in practice also lends itself to parallelism. When
a search is split, the search done on the first part and on the second
one are independent and can be done in parallel. Given enough
processors, the complexity of the algorithm is logarithmic in the
number of changes investigated. It is sufficient to have the number
of processors equal to the number of changes found; this is usually
very small.

As stated above, for our application it is desirable to keep the
number of changes in each test as low as possible. To alleviate
this problem, the algorithm in [23] can be modified to a sequential
algorithm. If all the changes are in part a or in part b, there is no
change. If the changes are in both parts a and b, we then search
for the relevant changes in part a (as before). Next we search for
the relevant searches in part b, while holding only the relevant
changes in part a (as apposed to holding all the changes). While
the algorithm can no longer be parallelized, it is more efficient for
our application when run on a single processor.

The algorithm we actually used in the experiments is as follows:

1. Order the modification (give them numbers from 1 to N).

2. Create a setS of instrumentation, which is the output of the
process, and initialize it with the empty set.

3. Create an index I equal to the index of the last instrumentation
point found and initialize it with N.

4. Repeat untilS is a solution (i.e., finds a bug).

(a) Use binary search to look for the smallestK in 1 ... I, such
that Q(1 ... K-1∪S) does not find the bug and Q(1 ... K∪S)
does.

(b) Set I to K-1.

(a) Delta Debugging

(b) Modified Delta Debugging

Figure 1. Delta debugging and modified delta debugging

(c) Add K toS.

Example:

1 .. 100 are the possible modifications.
F = {1, 20, 40, 60}

Look for the one with the largest index
Q(1..50) replies No as there is one outside (60)
Q(1..75) replies Yes
and so forth.
.... until we found it is 60
add the 60’th modification to S, change I to 59

S is still not a solution, continue

Start looking for the second one
Q(1..30, 60) replies No (because of 40)
Q(1..45,60) replies Yes
and so forth.
... until we found it is 40
add the 40’th modification to S, change I to 39

When S becomes a solution (we find F), we are done

This algorithm is slightly better than our modification of the
DD algorithm. To find a singleton (if we do not know that the
reply is a singleton) the average complexity of the DD algorithm
is 1.5log(N). This is because every time we check, we choose with
50 percent probability in the first try and with 50 percent in the
second. Roughly the same calculation will hold when the solution is
a small number of changes. Another advantage is that our queries,
on average, have a smaller amount of instrumentation.

4. Implementation
We used several sub-components to implement our solution:

• Component that extracts the setS of all possible locations
where we may want to add noise.

• Component that can instrument noise at any subsets ⊂ S.

• Component that can determine if a program, with noise applied
to s ⊂ S, displays a concurrent bug.

The following sections review these sub-components and ex-
plain how we implemented them.

4.1 Extracting the initial set of possible changes

Our technique use AspectJ to extract the set of all possible lo-
cations to which noise can be added. AspectJ’s compiler uses (-
showWeaveInfo) option to print out information on all the pointcuts
that were advised. The information is presented in the following
format:

Type ’Test’ (Test.java:46) advised by
before advice from ’Initial’ (Initial.java:9)

We extract all possible variable sets and gets in a certain pro-
gram by using the -showWeaveInfo option in AspectJ’s compiler
with the following aspect:

import java.util.*;

public aspect Initial extends Thread{
pointcut noiseVictem():(

(get(* *) || set (* *)) &&
within(!Initial)

);

private static Random rand = new Random();
before(): noiseVictem() {
if (rand.nextInt(100) == 1){

//activation probability
yield();

}
}

}

This is the same aspect we use to instrument noise in [6]. For
our purpose, the advise itself is not important; the important part is
getting all the locations.

4.2 Applying a subset of the changes to a program

The information retrieved by -showWeaveInfo prints out locations
as pairs of class name and line number. The problem we faced
was that AspectJ’s pointcuts don’t support a specific line number
to advise. Hence, there is no way to tell AspectJ to instrument at a
specific line number. The good news is that AspectJ is open source
and we were able to alter a pointcut type to allow instrumentation
of specific line numbers. We changed the ”‘Within”’ pointcut, so it
receives two parameters, a type pattern and a line number, with (0)
denoting a wildcard line number. Take for example, a program with
a class called ClassA, which has an access to a variable at lines 1,
2 and 3. If we want to instrument lines 2 and 3, we create an aspect
as follows:

import java.util.*;

public aspect NoiseAspect extends Thread{
pointcut noiseVictem():(

(get(* *) || set (* *)) &&

within(ClassA, 2) &&
within(ClassA, 3) &&
within(!NoiseAspect,0)

);

private static Random rand = new Random();
before(): noiseVictem() {
if (rand.nextInt(100) == 1){

// activation probability
yield();

}
}

}

Weaving this aspect with the debugged program would add
noise to lines 2 and 3 of ClassA.

A few modifications were required to add this change to As-
pectJ:

• Changes to the WithinPointcut class

Its constructor now receives two parameters: a type, as it
did before, and a line number. The line number is kept in a
private data member.

The methods ”‘matchInternal”’ and ”‘match”’, which check
if a certain pattern is matched, now check for line number
matching in addition to type pattern.

The method ”‘fastMatch”’ can no longer be used for pattern
matching since FastMatchInfo doesn’t keep the line num-
bers. We decided not to fix this and now fastMatch returns
FuzzyBoolean.MAYBE;.

The ”‘equals”’ method now tests for line number in additon
to type patterns.

The ”‘write”’ and ”‘read”’ methods, which are used for seri-
alization, were changed to keep the line number in addition
to the type pattern. In additon to the WithinPointcut class.

Alterations to the class PatternParser. This class now expects a
second argument for the within pointcut from which it creates a
new WithinPointcut object using our new constructor.

To determine whether a program that was instrumented at a
subset of all locations reveals the bug, we execute the program
a number of times. If the bug appears more than a specific
threshold of times we declare it successful.

4.3 Putting it all together

We start with a program that contains a bug that doesn’t ap-
pear when the program is run normally, but appears when in-
strumented with noise. We first retrieve the set of all possible
locations that can be instrumented with noise. We then use one
of the search algorithms described in the previous section. In
each iteration, for a given subset of all possible locations, we
create an aspect for the specific subset, weave it into the de-
bugged program with our altered version of AspectJ, and then
we test to see if the bug appears enough times. We then move
on to the next iteration.

5. Experiments

We conducted several experiments to show the feasibility of
our approach, mainly on code taken from the concurrent bugs
benchmark [10]. We illustrate the approach using synthetic
programs created for this work and a program from Sun that

demonstrates concurrent issues. For each program, we examine
the performance of each search algorithm described in Section
3.

5.1 Increment operator

In Java, the Increment operator is not atomic. A common fault
is to consider it as such, as demonstrated by the following
program:

01. public class Atomic extends Thread {
02.
03. private static long sharedVariable=0;
04.
05. public Atomic () {
06. }
07.
08. public void run () {
09. sharedVariable++;
10. }
11.
12.
13. public static void main (String[] args)

throws InterruptedException {
14. Atomic a1 = new Atomic();
15. Atomic a2 = new Atomic();
16. a1.start();
17. a2.start();
18. a1.join();
19. a2.join();
20. System.out.println (sharedVariable);
21. }
22.}

This program has a bug in line 9. For this program to work prop-
erly, we should have added a synchronize around the increment
operator. When we ran our tool on this program, all three search
algorithms reported line 9 as the problematic one. This program
has three program locations that are candidates for instrumen-
tation, lines 3, 9 and 20. Table 1 shows the number of iterations
it took for each search algorithm to reveal the location of the
bug. The binary search worked bestas expected. The binary set
search algorithm required an extra iteration, since after each lo-
cation discovered it checks whether it found a minimal subset
or if more searching is needed; this costs an extra iteration.

Algorithm Number of iterations
Linear 3
Binary 2

Binary Set 3

Table 1. Number of iterations until the bug location was discov-
ered for the Atomic program

5.2 Bank simulator

This program, created by Sun to show concurrent problems,
simulates a bank with several customers. Each customer has an
account, where he can decide to deposit or withdraw a certain
amount of money at random. The bank maintains the balance
for all accounts and for the bank itself. The bank’s balance is
the sum of all accounts. In this program, the programmer keeps
a variable for the bank’s balance and an array of balances for
all the customers. Each time a customer performs an operation,

both the bank’s balance and the customer’s balance are updated.
The bug is that the update is not done atomically. The program
has 29 possible noise locations. Table 2 shows that the binary
search was the most effective for this program. All the search
algorithms pointed to line 78 of the bank class.

...
76. public static void Service(int id,int sum){
77. accounts[id].Balance += sum;
78. Bank_Total += sum;
79. }
...

Algorithm Number of iterations
Linear 29
Binary 5

Binary Set 6

Table 2. Number of iterations until the bug location was discov-
ered for the bank simulation program

On average we will expect the number of iterations of the linear
search to be half the instrumented locations. In this example it
happend to be the last location in the program.

5.3 Interaction between two locations

We synthesized a short program where one location was not
enough to reveal the bug and the program’s entire code could
be shown here. We have seen quite a few examples in the field
where one location is not enough.

01. public class TwoChanges extends Thread {
02.
03. private int mode;
04.
05. private static int x=1;
06. private static int z=4;
07.
08. public TwoChanges (int mode) {
09. this.mode = mode;
10. }
11.
12. public void run () {
13. if (mode==0) {
14. for (int i=0; i<10000; ++i) {
15. if (x != 0){
16. try{
17. z = 5/x;
18. } catch (Exception e)

{System.out.println("bug");}
19. }
20. }
21. }
22. else {
23. for (int i=0; i<10000; ++i)
24. {
25. x=1;
26. x=0;
27. x=1;
28. }
29. }
30. }
31.
32. public static void main (String[] args)

33. throws InterruptedException {
34. TwoChanges a1 = new TwoChanges(0);
35. TwoChanges a2 = new TwoChanges(1);
36.
37. a1.start();
38. a2.start();
39. a1.join();
40. a2.join();
41. System.out.println (z);
42. }
43.}

Interleaving that goes through line 26 and then line 17 is re-
quired for the bug to appear in this program, therefore, adding
noise in one of the two locations is not enough. If we only add it
in line 26, line 15 protects the bug. If we add it in line 17, there
is little chance the scheduler will choose to perform a context
switch in line 26. This program has 11 possible locations at
which noise can be added. As expected, both algorithms that
attempt to find a single location failed. The set detected by the
binary set search included lines 17 and 27, and was found af-
ter eight iterations. It is interesting that the linear search had
to go over all the possible locations to figure out that it failed,
while the binary search needed only two iterations to arrive at
the same conclusion.

6. Conclusions and Future Work

This paper contain three contributions: a technique for pin-
pointing the location of concurrent faults, a new delta debug-
ging algorithm, and a modification of AspectJ that enables the
implemention of more testing technologies.

The technique for pin-pointing the location of concurrent faults
is a step in a direction towards automatically fixing concurrent
bugs. In previous work we exposed existing bugs and studied
bug patterns. After pin-pointing the bug location, the next step
is to suggest a fix. This goal is still far away, especially in the
unsupervised mode, but we believe the work shown in this paper
is an important step in the right direction.

To achieve our goal, we developed a new delta debugging al-
gorithm. This algorithm is superior for our implementation and
may be of further use to other applications. Traditional DD al-
gorithm are can easily take advantage of parallel computing.
Different usage scenarios lend themselves to different algo-
rithms.

We are now performing experiments on real applications. We
are working both on improving the query using statistical tech-
nique and on new algorithms, for example reinforcement learn-
ing, mainly from the domain of machine learning.

In our previous work [6], we saw that AspectJ can be used
for testing but fell short in fulfilling the needs of ConTest [9]
because some features were missing. In this paper, we took
advantage of the fact that AspectJ is an open source tool and
altered it to meet our needs. Performing our changes to AspectJ
was relatively simple due to the fact that it is well written and
easy to comprehend. Using our altered version of AspectJ we
could implement our tool to its full extent. The change we
have made is useful for a number of other testing tools. For
example when performing coverage measurement and wanting
to have minor performance impact. Coverage measurement is
usually done by instrumenting the code and measuring which
instrumentation points where executed. The main performance
impact is due to the commonly executed instrumentations. After
each test removing the points that were executed will result in

very good performance. Creating such a coverage tools with
AspectJ is now feasible due to our enhancement.

It is clear to us that AspectJ is a very powerful solution for
academic purpose. When creating an industrial strength tool,
some changes will be necessary to AspectJ in order to for all the
features to work. A specific study, based on the requirements,
will be needed for each industrial tool to check if AspectJ is
suitable.

References

[1] Aspectj getting started, http://www.elipse.org/aspectj.

[2] Yosi Ben-Asher, Yaniv Eytani, and Eitan Farchi. Heuristics for
finding concurrent bugs. InInternational Parallel and Distributed
Processing Symposium, IPDPS 2003, PADTAD Workshop, 2003.

[3] Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel
Ur. Applications of synchronization coverage. InPPoPP
’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 206–212,
New York, NY, USA, 2005. ACM Press.

[4] Jong-Deok Choi and Harini Srinivasan. Deterministic replay
of java multithreaded applications. InProceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools,
August 1998.

[5] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing
thread schedules. InISSTA ’02: Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 210–220, New York, NY, USA, 2002. ACM
Press.

[6] Shady Copty and Shmuel Ur. Multi-threaded testing with aop
is easy, and it finds bugs! InProceedings of Europar 2005.
Springer-Verlag, 2005.

[7] James C. Corbett, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Shawn Laubach, and Hongjun Zheng.
Bandera: Extracting finite-state models from Java source code.
In Proc. 22nd International Conference on Software Engineering
(ICSE). ACM Press, June 2000.

[8] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil
Ratsaby, and Shmuel Ur. Testing multi-threaded java programs.
submitted to the IBM System Journal Special Issue on Software
Testing, February 2002.

[9] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and
Shmuel Ur. Multithreaded Java program test generation.
IBM Systems Journal, 41(1):111–125, 2002. Also available
as http://www.research.ibm.com/journal/sj/411/-
edelstein.html.

[10] Yaniv Eytani and Shmuel Ur. Compiling a benchmark of
documented multi-threaded bugs. InIPDPS, 2004.

[11] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns
and how to test them. InIPDPS, page 286, 2003.

[12] A. Hartman, A. Kirshin, and K. Nagin. A test execution
environment running abstract tests for distributed software. In
Proceedings of Software Engineering and Applications, SEA
2002, 2002.

[13] K. Havelund and T. Pressburger. Model checking java programs
using java pathfinder.International Journal on Software Tools
for Technology Transfer, STTT, 2(4), April 2000.

[14] Eyal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai.
Towards integration of data-race detection in dsm systems.
Journal of Parallel and Distributed Computing. Special Issue
on Software Support for Distributed Computing, 59(2):180–203,
Nov 1999.

[15] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327–355, 2001.

[16] Brad Long and Paul A. Strooper. A classification of concurrency
failures in java components. InIPDPS, page 287, 2003.

[17] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe. Software
test coverage and reliability. Technical report, Colorado State
University, 1996.

[18] B. Richards and J. R. Larus. Protocol-based data-race detection.
In Proceedings of the 2nd SIGMETRICS Symposium on Parallel
and Distributed Tools, August 1998.

[19] Stephen Savage. Eraser: A dynamic race detector for multi-
threaded programs.ACM Transactions on Computer Systems,
15(4):391–411, November 1997.

[20] Scott D. Stoller. Model-checking multi-threaded distributed java
programs. InProceedings of the 7th International SPIN Workshop
on Model Checking, 2000.

[21] Scott D. Stoller. Model-checking multi-threaded distributed
Java programs.International Journal on Software Tools for
Technology Transfer, 4(1):71–91, October 2002.

[22] Scott D. Stoller. Testing concurrent java programs using
randomized scheduling. InIn Proceedings of the Second
Workshop on Runtime Verification (RV), volume 70(4) of
Electronic Notes in Theoretical Computer Science. Elsevier,
2002.

[23] Andreas Zeller. Yesterday, my program worked. today, it does not.
why? InESEC/FSE-7: Proceedings of the 7th European software
engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering,
pages 253–267, London, UK, 1999. Springer-Verlag.

[24] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Trans. Softw. Eng., 28(2):183–200,
2002.

