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Abstract

This document is an updated and translated version of thm&epapeirithmetische
Kodierung[BCKO02] from 2002. It tries to be a comprehensive guide toaheof arithmetic
coding.

First we give an introduction to the mathematic principlasmived. These build the foun-
dation for chapter 3, where we describe the encoding anddifegalgorithms for different
numerical systems. Here we also mention various probleragan come across as well as
solutions for those. This is followed by a proof of uniquenasd an estimation of the effi-
ciency of the algorithm. In the end we briefly mention diffetr&inds of statistical models,
which are used to actually gain compression through thedingoThroughout this paper we
occasionally make some comparisons to the related Huffmaading algorithm. Though,
some rudimentary knowledge about Huffman encoding shauffits for the reader to follow
the line of reasoning.

This paper is mainly based an [Say00] and [BCW90]. On therateebase our imple-
mentation which is included in the appendix as full C++ seuwrode. We also make use of
parts of this code during some of our examples. The matheatatiodel we use, however, is
strongly based on [Say00] and [Fan61]. Also we employ thé-krewn Shannon-Theorem
[WS49], which proofs the entropy to be the bound of feasildsliess compression.






1 Motivation and History

In comparison to the well-known Huffman Coding algorithm, Arithmetic Codingcammes the
constraint that the symbol to be encoded has to be coded by a whole nofitiesr. This leads
to higher efficiency and a better compression ratio in general. Indeedwgithh Coding can be
proven to almost reach the best compression ratio possible, which isdubtydhe entropy of
the data being encoded. Though during encoding the algorithm genenstesde for the whole
input stream, this is done in a fully sequential manner, symbol after symbol.

Arithmetic Coding, though not being very complex to understand, was raw kefore the
late 70’s in the form we use it today. It was able to gain more interest in thse 80& to its high
efficiency and the fact that the hardware implementation of Arithmetic Codingrisstraightfor-
ward. First approaches to the topic were already giveAlmamsorandEliasin 1960, however,
these days they did not come up yet with an appropriate solution to a prol#eamevsoon going
to address: The arithmetic accuracy needs to be increased with the lenbthioput message.
Fortunately, in 197@ascoandRissanerproved that specific finite-length numbers actually suf-
fice for encoding - without any loss of accuracy. However, theseritigas were still not very
memory-efficient. In 1979 and 1980 thé&tybin GuazzoRissanerandLangdonpublished almost
simultaneously the basic encoding algorithm as it is still used today. It is loasiuite-precision
arithmetic, employing a FIFO mechanism. The implementationRisganerandLangdonwere
also very close to later hardware implementations.

Thus, compared to other fields of Computer Science, Arithmetic Coding is syilying,
however already mature and efficient principle for lossless data engoslhvich satisfies all the
requirements of what people understand of a modern compression algobtita input streams
can be compressed symbolwise, enabling on-the-fly data compresdism Adthmetic Coding
works in linear time with only constant use of memory. As mentioned above, firggson
integer arithmetic suffices for all calculations. These and other propentks it straightforward
to derive hardware-based solutions. As we will see soon, Arithmetic Qasladso known to reach
a best-possible compression ratio, provided the single symbols of the trgarinsare statistically
independent, which should be the case for most data streams. Also it eahdmgced very simple
by allowing simple plug-in of optimized statistical models. The decoder uses athmsame
source code as the encoder which also makes the implementation straigidforwa

Nowadays there are a lot of hidden applications of Arithmetic Coding, subhar@ware based
codecs as for instance the fax protocols G3 and G4. This kind of apphcat#ikes Arithmetic
COﬁiing maximally efficient by the use of a small alphabet with an unevenly distdtprobabil-
ity.?

2Note that a fax page usually holds much more white pixels than black ones.
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2 Introduction

Before jumping into the fray and starting with the explanation of the encodirayittign, first we
introduce some basic terms commonly used in data compression. They will dé¢huseghout
the whole paper.

Our goal is to compress data, which might either be stored on a compudiabteanedia or
be sent over some form of stream. This data could represent anyteaaing from simple text
up to graphics, binary executable programs etc.

However, we do not distinguish here between all those data types. We siepihem all as
binary input. A group of such input bits is what we will refer to as a symbok. ikstance one
could think of an input stream being read bytewise, leadind*te 256 different input symbols.
For raw text compression, it could also suffice to take an alphabet o§Wr28ols only, because
the ASCII code is based on a 7-byte structure.

2.1 Foundations

DEFINITION 1 (ALPHABET AND SYMBOL)
We call a finite, nonempty set anPHABET. TheLENGTH or cardinality of an alphabet A will be
referred to agA|. The element$ay, ...,an} of an alphabet are calledymBoOLS.

Also we assume tha is an ordered set, so givin@y, ..., am} a distinct order.

We already mentioned above that the Arithmetic Coding algorithm works stgllenThus
we need some notion of what the sequential input and output of the ddecdder might look
like. This leads us directly to the notion oc&QUENCE

DEFINITION 2 (SEQUENCE
A series S= (s1,S. .. ) of symbols;sfrom an alphabet A is calledEQUENCE In the latter we will
also use the shortcutSs;s,...

In analogy to the definition o, |§ is the symbol for the length &, provided thaSis of finite
length. However|S < o will be a general assumption henceforth, since most of the corrolary
would otherwise make no sense.

Please note that this representation of data is somehow natural, since mastmade media
can be read in a sequential order. Just think of books, videos, tageaae.

Also, when looking at a sequence, one can calculate a distinct probalbiégch symbol of
the alphabet to occur in this very sequence. This probability might be vewemly distributed, a
lot depending on the application domain. For instance consider the dettdrich is much more
common tharzin the English Ianguag%Since Arithmetic Coding depends a lot of such statistical
measures in order to achieve compression, we introdugerbeABILITY of a symbol as follows:

DEFINITION 3 (PROBABILITY)
Let S= (s1,...,S) a finite-length sequence witB| = n over A= {a,...,am}. Also let|], the

frequency of gin S. Then we define(R) := 'ﬂTa' as thePROBABILITY of g (in S).

From the definition, we can directly conclude th) is always contained in the interval
[0,1) for any symbol, whereas the sum over all such probabilities is alywdysP(a) = 1. Please
note that this interval is open-ended, because it would make no sens®tieenconstant sequence
holding only a symbol of probability 1, simply because in that case the futecwof the sequence

3An elaboration on http://www.simonsingh.net states an average probabili; @ for lettere and 0,1% forz.
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would have been known beforehand already. We will later on make ubésqgiroperty in certain
conclusions.

Recapturing the example efz however, we would like to emphasize that the probability of
a symbol might heavily depend on its context. If one considersdz as symbols for bytes in a
binary executable for example, they might be rather evenly distributed.ofls@ould even show
that certain symbols are more likely to occur in scientific text than newspagpsesand so forth.

Some data is subject to interpretation: E.g. consider the sequence 131113flcould be
interpreted as a sequence of symbal8 @r 11, 13. At least this example proves that we need
some kind of unambiguous rule of how probabilities are related to symbols. dlaton between
symbols of an alphabet and their probability is commonly known &®aEL in terms of data
compression.

DEFINITION 4 (MODEL)
Let A an alphabet. AMODEL M is a function

M:A—[0,1):a+— Pu(a),
which maps a probability (&) to each symbol;ae A.

This probability might be estimated / calculated and does not necessarilydeanech the real
probability of the symbolP(&;). Indeed in most cases it does not. Please also note that an alphabet
is not restricted to only hold symbols of length 1. In the example above, empldilimnd 13 as
symbols we already got a picture of that. If one estimates the probability afea giymbol not
only by looking at the symbol itself but also at the context given by thenlasimbols seen, one
speaks of arDrder—n model For instance the average probability of the letido occur in
any German text is only about@35. If one considers its probability to occur after the letter
however, this value raises to nearly 1! As one can see already nowsraaged value of might
lead to better predictions of probabilities.

As already briefly mentioned above, the probability distribution that is giwethb inter-
pretation of a sequence under a certain model, matches the real probabilityution at best
by chance. Usually this will not be the case. For instance there will be aimeo&terman text
fulfilling the distribution given by Table 1 exactly, but rather approximatelgw@n worse. To dis-
tinguish the probability induced by the model from the real one, we labebthed withPy (&) in
order to emphasize the dependency of the model and in order to distinguristife latter, given
by P(a).

So we conclude that a model can be seen as an interpretation of an gristi@set. A simple
model could for instance be given by the probability distribution of TableHis Table shows the
probabilities of most letters of the German alphabet to occur in an average@éext. Probably
the clever reader can already anticipate now, that the compression raflibleavily depend on
how good this model matches the reality.

This leads to the need to define some kind of measure of compression, gnebimactually
compare the efficiency of different compression approaches. Aalangasure of how much
information is contained in a given sequence of data is calledrT®OPY.

DEFINITION 5 (ENTROPY)
Let S a sequence over alphabetAay,...,an}. TheENTROPY Hy(S) of the sequence S under
model M is defined as

Hw (S) :_;P(ai) Id Bu@) 1)
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a| 00651 h | 0,0476|| o | 0,0251| v | 0,0067
b | 0,0189| i | 0,0755| p | 0,0079| w | 0,0189
c | 0,0306( j | 0,0027| q | 0,0002| x | 0,0003
d | 0,0508(| k | 0,0121| r | 0,0700(| y | 0,0004
e | 0,1740( | | 0,0344| s | 0,0727| z | 0,0113
f | 0,0166| m | 0,0253| t | 0,0615

g | 0,0301}| n | 0,0978| u | 0,0435

Table 1: Probability of letters in an average German text (taken from [#H&u9

The unit of the entropy ibits/symbo] because the formula only refers to probabilities as relative
frequencies rather than absolute ones.

By the formula one can easily see that with our definition, the entropy of seseg depends on
the modelM being used, since thay(a;) are the probabilities under that model. Hd%
can be interpreted as the minimal length of a binary symbdafavhile the factoiP(a) (being the
real probability ofa) can be interpreted as probability of requiring the encoder to binarydenco
this very symbol@

Considering a model as perfect, one obtainscibreect probability distribution leading to the
natural form of the entropy:

H(S)= 3 Plaild % @

This kind of entropy is depended on the input data only mmslubject to interpretation. How-
ever the interested reader might wish to know that most of the literature Abidunetic Coding
sloppily does not distinguish between both kinds of entropy.

2.2 Example: Entropy

Let us have a look at the sequer8e- abaabcdaover alphabefa, b,c,d}. We want to binary
encode this sequence. Since we have no clue at all about how théfitessshould be distributed
in the first place, we decide for the simple mod&l, which - by chance - leads to the correct
probability valuesPy, (a) = 0,5, Py, (b) = 0,25, Py, (¢) = 0,125 andPy, (d) = 0,125. One can
easily see that this model is ideal in the sense that the estimated probaBjlitissmatch the real
onesP(s):

Pu,(s) = P(s) Vse A:={a,b,c,d} .

When encoding this sequence, we can do so in a very naive way by sisipty2ibits per symbol,
{00,01,10,11}, which leads to overall costs of& bits= 16 bits. So what about the entropy of

4If one does not encode binary but rather to a basthen one only has to replate with logm.
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Hw, (S)?

1
Hw, = P(s) Id

1 se{a,zb,c,d} P, (9)

1 1
o,5>+(0’25' ld 0,25)

+(0,125- Id ) 125)+(0, 125. Id ) 125)
= 0,5-1d2+0,25- 1d 4+0,125- |d 8+0,125- |d 8
0,5+0,5+0,375+0,375
= 1,75[Bits/Symbo]

= (0,5 Id

Note that this is given ifBits/Symbo], which means that we need a minimum efil875= 14 bits
to encode the whole input sequence. We cannot do any Befitds gives a saving of 16 14=2
bits.

However, what would have happened if we had not been so lucky ®sgbe correct prob-
ability distribution on advance? Have a look at the following modelwith Py, (a) = 0,125,
Pwv,(b) = 0,125,Py,(c) = 0,5 andPy,(d) = 0,25. The entropy undevl, calculates to:

1
Hv, = P(s) Id
. se{e;b,c,d} P’V'z (S)

= (0,5 1d

1 1
0, 125 + (0,25 1d 0,125)
1 1
+(0,125. Id G g)+ (0,125 Id o )
— 0,5-1d 840,25 Id 8+0,125. Id 2+0,125. Id 4
1,54 0,75+0,125+0,25
= 2,625[Bits/Symbo]

We should see this example as a warning. A warning, not to mix up the notioodirig with
compressionThe reason for this is that we can see that under the méglele would be required
to use 2625« 8 = 21 bits to encode the input sequence. However, this would be no cornmorass
all, if one remembers that our naive encoding with 2 bits per symbol empldybitsdaltogether
only. Also we can conclude that the compression ration can only be asagothee underlying
model allows. The better the model matches the reality, the better the compnegkimn

However, in the following chapters we will prove, that given any particaladel (that on its
own might be as optimal as it can be), Arithmetic Coding achieves the absoletlgdmpression
ratio, meaning that no other algorithm could do any better under the veryrsanhs.

Since we now stirred up your interest so much, we are now going to deshgtactual encod-
ing and decoding algorithms.

5Note that we do not prove the entropy as measure of optimality here. &ttisfcommonly known as ti&hannon
TheoreniWS49].
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2.3 Encoder and decoder

DEFINITION 6 (ENCODER& D ECODER)
An algorithm which encodes a sequence is calledrooDER The appropriate algorithm de-
coding the sequence again is calledaCODER

In opposite to the input sequen&we refer to the encoded sequence which is output of the
encoder and input for the decoder®@gd€S) or C(S) for short.The application of both algorithms
is referred to aENCODING respectivelyDECODING.

We want to emphasize that we use the notion of an algorithm in its most natyraheaning
a general sequence of steps performed by any arbitrary computpurBgse we do not limit our-
selves to a certain implementation at this stage. An encoder could be any algwétisforming
the input in such a way that there is a decoder to reproduce the raw iataut owever at the
end of this paper we present the full C++ source code of a encodeddepair (also referred to
ascoDECQ), which employs Arithmetic Coding. The following code examples are taken fhis
reference implementation.

In the theory of data compression one often distinguishes between |labkysaltess compres-
sion algorithms. Especially analogous signals are often encoded in a lagdyewause such data
is in the end meant to be interpreted by some kind of human organ (eye, ead.su@h organs
are very limited in a sense that they simply do not recognize certain levelssaf aiodistortion at
all. Of course lossy compression algorithms can reach better compreasaby losing some
accuracy. However we are not going to consider any lossy compnessibis article and rather
concentrate on lossless compression, that can be applied to all kindsohdgeneral. Thus we
are only going to consider codecs that are able to reproduce the irfputgl#o the last symbol.
In a nutshell our resultinGod€S) will be proven lossless and optimal.

2.4 The notions of uniqueness and efficiency

DEFINITION 7 (UNIQUE DECODABILITY)
We call a codeJNIQUELY DECODABLE, if any sequence is mapped to its code in an injective way.
If this is the case one can determine the unique input symbol for any giden ¢

A special class of uniquely decodable codes are so-called prefiscdtiese can be charac-
terized by the property that no codeword is a prefix of any other coakewo

DEFINITION 8 (PREFIX CODE
We call a given code C BREFIX CODE if for no pair (x,y) of symbols of the alphabet,(&) is

prefix of Qy).

Prefix codes have the big advantage that as soon as the decodeadh@¢$xjefor a certain
X, it knows at ones that the code is terminated and that symiaals encoded. In the case of an
arbitrary code, it could be the case that the decoder would have to neéadeder to see i€(x)
was probably only the prefix of another co@¢y). Thus, prefix codes are known to be a class
of uniquely decodable codes. The diligent reader can find a constrymof of this property in
[Say00] p.31.

Now we are fully equipped to start with the actual coding algorithm. The follgveimapter
introduces the general method of Arithmetic Coding. The subsequertechapolve this method,
address some of the problems one comes across and discuss the actuaéimggien.
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3 Encoding to real numbers

Huffman-coding was considered to be almost optimal until arithmetic codingdexasloped in
the 70s. The resulting code is usually very close to the entropy and see#dhesome special
cases. Its disadvantages are the relatively complex generation of thereedand the limitation
to encode symbols or groups of symbols as such. The binary code iméhHtoding is looked
up in a balanced binary tree that approximates the symbol probabilities:t&rteat the root and
searches for the appropriate node for the given symbol. The brauiachdabeled binary, so the
resulting code word is the sequence of passed branches. Since therrafrphssed branches in
one pass is always a whole number, each symbol is always encodedquense of full bits. We
will show that this is an unnecessary constraint.

Arithmetic Coding uses a one-dimensional table of probabilities instead of .altrakvays
encodedhe whole messagat once. This way it is possible to encode symbols using fragments
of bits. However, one have cannot access the code word randonilyg Haffman-coding, one
can specify marks that allow decoding starting within the bit stream. Of caueecan also
split messages in arithmetic coding, but this limits the efficiency since use ofbitnts on the
boundaries is impossible.

What we are looking for is a proper way to encode a message without mgsayfixed binary
code to each symbol. So let’s take a look at the probabilities of the symbols:rédhpilities
fall into the rang€g0, 1) while their sum equals 1 in every case. This interval contains an infinite
amount of real numbers, so it is possible to encode every possiblerseoea number ifD, 1).

One partitions the interval according to the probability of the symbols. By itgydiis step for
each symbol in the message, one refines the interval to a unique restaftiesents the message.
Any number in this interval would be a valid code.

Let M be a model that assigns a probabilRyi(a) to each symbok; that appears in the
message. Now we can split the inter{@J1) using these values since the sum always equals 1.
The size of the—th sub-interval corresponds to the probability of the synhol

3.1 Example: interval creation

Let M be a model using the alphab&t=a,b,c,d. Let the probabilities of the symbols in the
message be

RAv(a) = 0.5, Py (b) = 0.25,Py (c) = 0.125 Py (d) = 0.125

Now the intervall0, 1) would be split as emphasized in Figure 1.

o

0.5 0.75 0.875 1

a b d C

Figure 1: Creating an interval using given model
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3.2 Upper and lower bounds

Henceforth we call the upper and lower bounds of the entire curremvatteigh andlow. The
bounds of the sub-intervals are calculated from the cumulative probabilities

k
(@) = 3 Pufa)

The valueshigh andlow change during the encoding process whereas the cumulative prob-
abilities remain constaft They are used to updatégh andlow. With respect to the previous
example, we get the following values:

high 1.0] K(0) 0.0[K(2) 0.75
low 0.0|K(1) 05| K(3) 0.875

We will see that this subdivision depends on the model. However, for newssume that it
is given by a constant table containing the cumulative probabilti@s). This type of model also
exists in real applications and is callsthtic

3.3 Encoding

The first step in encoding is the initialization of the interva¥ [low, high) by low = 0 andhigh=

1. When the first symbda}, is read, the intervdlcan be resized to a new interyahccording to the
symbol. The boundaries &f are also calletow andhigh. We choosé’ to equal the boundaries
of s; in the model. However, how are these boundaries calculated$; ey be thekth symbol
of the alphabet. Then the lower bound is

k-1
low := ‘ZlPM(a;) =K(ak-1)

and the upper bound is

k
high::;PM(ai) = K(a)

The new interval’ is set to[low, high). This calculation is nothing new, it just corresponds to
the mathematical method of the construction of Figure 1. The most relevattaghis method
is that the sub-intervdl becomes larger for more probable symtglsThe larger the interval the
lower the number of fractional places which results in shorter code wattllowing numbers
generated by the next iterations will be located in the intefvsihce we use it as base interval as
we did used0, 1) before.

We proceed with the second symissl= a;. However, now we have the problem that our
modelM describes a partitidrof the interval[0, 1), not of I’ which was calculated in the previous
step. We have to scale and shift the boundaries to match the new interdalg$saccomplished

6provided we are using a constant model
A partition is a disjoint union of sets calledasses All classes have empty intersections and the union of all
classes results in the base set.
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by a multiplication withhigh— low, the length of the interval. Shifting is performed by adding
low. This results in the equation

i—1
low := Iow+{ZP,v|(a4)-(highIow):low+K(aj1)-(highIow); (3)

high = I0W+2F’,\A(a;).(high—low):I0W+K(aj)-(high—low). 4)

This rule is valid for all steps, especially the first one wiitw = 0 andhigh— low = 1. Since
we do not need the old boundaries any more for the next iterations, weaveanrite them:

low = low ;
high := high .

This iteration might look complicated, but we will give an example resembling ttieigén
2.2. Figure 3 on page 17 gives a picture of this. 8&ie the sequencabaabcdausing our ideal
modelMj.

We start with the intervgd, 1) and the first element @. Sinces; is ana, the new boundaries

are calculated as follows:
low = 0
high = 0+05-1=0.5.

The resulting interval i§0...0.5). The next iteration encodesba

low = 0+05-(0.5-0)=025
high = 0+05-(0.5—0)+0.25-(0.5—0) = 0.375.

followed by a second

low = 0.25
high = 0.25+0.5-(0.375—0.25) = 0.3125.

and a thirda

low = 0.25
high = 0.2540.5-(0.3125-0.25) = 0.28125,

The fifth character is b

low = 0.25+0.5-(0.28125-0.25) = 0.265625
high = 0.25+0.5-(0.28125-0.25)+0.25- (0.28125— 0.25) = 0.2734375
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followed by ac

low = 0.265625+0.5-(0.2734375-0.265625 + 0.25- (0.2734375- 0.265625
— 0.271484375
high = 0.265625+ 0.5 (0.2734375-0.265625 +0.25- (0.2734375- 0.265625
40.125.0.25- (0.2734375- 0.265625
= 0.2724609375

ad

low = 0.271484375+ (0.5+4 0.25+0.125)- (0.2724609375- 0.27148437%
= 0.2723388672
high = 0.2724609375

and at last anothex

low = 0.2723388672
high 0.2723388672-0.5- (0.2724609375- 0.2723388672
0.2723999024

So the resulting interval i©.2723388672; 2723999024



0.5

Input a

r 0.5

d

B 0.25

| 1
] 1
0 1
Figure 2: Iterated partitioning of the intenj@, 1) (uniform distribution)
Input b Input a Input a Input b Input c Input d
0.375 T 0.3125 T 0.28125 T 0.2734375 7 0.2724609375 | — 0.2724609375
d d d d / d d
/ C C C / C C C
b b b b b b
0.3125 T 0.28125 0.265625 |- 0.26953125 0.2719726563 |~ 0.2723999024
a a a a a a
025 V" 025 V" 0.25 — 0.265625 —— 0.271484375 — 0.2723388672

Figure 3: Function of the encoder

&8

Input a

0.2723999024
d
C
b

0.2723693848
a

0.2723388672

buipoouz g€

Target inteval

LT



18 3 ENCODING TO REAL NUMBERS

The next matter is the actual code. We have to specify the calculated int&wale could
simply save the upper and lower bound, but this is rather inefficient. Krgpthiat the whole
interval is unique for this message, we can safely store only a single vaide ithe interval. The
following lemma should clarify this technique.

LEMMA 1 The codes of all messages with the same length form a partition of the inteeval
[0,1).

This results clearly from Figure 2. A direct conclusion of the lemma is thefiatthe classes
of the partition become infinitely small for infinitely long messages. There aiafimitely long
messages in practice, but there are very large messages and theautieg small partitions
would cause problems on common computers using finite arithmetics. A solutionrésiteding
presented in section 5.

In the last example we can for instance sto/&7@34 or any other value in the interval. Here
we still assume that we know when the message ends, although this is ustiiily case (think of
remote data transmissions). End-of-message handling is discussedlatenvfwe will proceed
with a short summary on encoding:

low =0;

high=1;

do {
temp = read_symbol();
ival = model->get_interval(temp); \\ returns the interval containing temp
low = calculate_lower_bound(ival);

high = calculate_upper_bound(ival);
} while (‘end_of_sequence());
return(value_in_interval(low,high));

3.4 Decoding

To decode a sequence, one somewhat have to apply the encodemldgxkwhe valud/ .=
Cod€9) is given and we have to restore the original sequehck/e assume that the message
length is known and equals In the first iteration we compahé with each interval’ := [K(ax —
1),K(ax)) to find the one that contains. It corresponds to the first symbol of the sequersge,
To compute the next symbol, we have to modify the probability partition in the sayeveaid
while encoding:

low := low+K(g_1)-(high—Ilow)
highh := low+K(g)- (high—low),
wherei has to comply
low <V < high

g is the next symbol in the encoded sequence. This time, the start case isasgpagial
case of the general formula. The iteration is very similar to the encodesoits implemention
should arise no further problems.
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3.5 Decoding example
We illustrate the decoder using the same data as in the previous examplessiltiag code was

V = 0.27234 and we assume that we know the lerigth8. Starting withlow = 0 andhigh=1
we see thaV lies inside the first intervalD...0.5). The corresponding symbol is arand we set

low = 0
high = 0.5

In the next iteration we see thatZ¥234 lies between the boundaries

low = 0+0.5-(0.5-0)=0.25
high = 0+0.75-(0.5—0) = 0.3125

and decode h. The relevant boundaries are underlined. The next iteration

0.25+0- (0.3125— 0.25) = 0.25

low =
0.25+0.5-(0.3125— 0.25) = 0.28125

high =

results in ara. Since the next iterations are very similar, we skip them and take a look at the

last iteration:

0.2723388672-0-(0.2724609375- 0.2723388672= 0.2723388672

low =
0.2723388672- 0.5-(0.2724609375- 0.2723388672= 0.2723999024

high =

This is the finak in the sequencabaabcda Because of the similarities, one can use Figure 3
in this case, too. The decoding algorithm can be summarized as follows:

seq = "
low = 0;
high = 1;

do {
= model->lower_bound(Value,low,high);

low’

high’ = model->upper_bound (Value,low,high);
low = low’

high = high’;

seq .= model->symbol_in_interval(low,high);
} while ( 'end_of sequence() );
return(seq);
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We used floating point arithmetic to calculate the boundaries, but withouefuriathods, this
results in a large number of fractional places. In particular, it is possibtarfinite numbers of
fractional places appear (consideiB). The circumvention of this problem is covered by the next
subsection. Note that the for the implementation of those methods it makes mertitfaf one

works over symbols or sequences. One can see this by working withdbelplity distributions
of sequences (see [Say00]).

3.6 Uniqueness of representation

LetC(a) be a code fog;:

C(ai) :==K(a-1) +% Pu(a) -

C(a) is the center of the interval @f. One can repladg(a;) by a shortened code of the length

1
@) =[1d 55T +1.

|C(&)]i(a) is defined as the binary code farshortened td(a) digits.

3.6.1 Example

Let Sbe the sequence

S= 51959

over the alphabeA = {a;,...,a4}. Let the probabilities computed by the modiébe

1 1 1

=2 P(as) =5, Pu(as) = 5.

The following table shows a possible binary code for this sequence. ifigylsepresentation
of C(a) was shortened tpld mW + 1 which led to the respective code.

Pua(as) = 5, Pa(20)

K(a) C(a) hbinary I(a) [C(ai)]i@) Code

1 05 0.25 0.0100 2 0.01 01

2 075 0.625 0.1010 3 0.101 101
3 0.875 0.8125 0.1101 4 0.1101 1101
4 1.0 0.9375 0.1111 4 0.1111 1111

3.6.2 Proof

We will now show that the code that was generated in the described wajgiseurBeforehand
we chose the cod€(g;) to represent the symba. However, any other value in the interval
[K(a-1),K(ai)) would also result in an unique code far To show that the codgC(a) (4 is
unique, it is consequently enough to show that the code lies in the inf&rial 1), K(g;)). Since
we cut off the binary representation©fa;) to get|C(&) || (4, the following equation is satisfied:
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1C(ai)]ia) < C(a).
Or in detail:

1
2@)"
SinceC(a) is smaller tharK (g) by definition, it follows that

0<C(ai)— [C(a) |ia) < (5)

[C(a) |ia) < K(a).

This satisfies the upper bound. The next equation deals with the lowed hQ&) |5 >
K(ai_1):

2l (&) ol Id A 1+1

IN

%&-) =C(a) —K(ai-1)
Consequently
Cla) K@ 1) > o ©)

is satisfied. The combination of (5) and (6) results in

1C(&) J1(a) > K(ai-1) - (7)

which implies

K(ai-1) < [C(ai) ]i@) <K(ai),

and thus

[C(@) ia) € [K(ai-1),K(&)) -
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0

Therewith it is proven thatC(&) |4 is @ non-ambiguous representatiorQgg;). To show
that it is non-ambiguously decodabile, it suffices to show that it is a prefle,csince we already
know that any prefix code is non-ambiguously decodable.

Given a numbea in the interval0, 1) with binary representation of the length[ay, ay, ..., an|.

It is obvious that any other numberwith the prefix[as,ay, ...,an] in binary representation lies
in the intervala,a+ ). If & anda; are different, we know that the valug€(a)](4) and
[C(aj)]i(a;) lie in two disjunct intervals

[K(ai-1),K(&)), [K(aj-1),K(a))

If we are able to show that for any symtslthe interval

1
[IC(@) ]i@): [C@)]ia) + 5ay)
is contained ifK(a_1),K(&)), this implies that the code of symbalcannot be prefix of the
code of another symbai;.
Equation|(7) implie§C(&) J;(a) > K(a-1). That proves the assumption for the lower bound,

so it is sufficient to show

This is obvious because of

K@) - [C@) i@ > Kla)—-C(a)

2 ola) "

Therefore the code is prefix free. In particular, shorte@(g) to | (&) Bits results in a non-
ambiguously decodable code. Hence we solved the problem of finite aritsmetrt floating
point numbers.

3.7 Summary

We have got to know the theoretical function of arithmetic coding and haue several exam-
ples. All this was based on floating point arithmetic with infinite precision. Wevskahat it

is actually possible to use this in implementations, but using integers usually liediakser and
easier implementations. In the following we show how to use integer arithmetichwndiges new
problems with respect to finite arithmetics. The output won't be a real nuatbier this chapter,
instead we will use a sequence of bits. This sequence will have to be terchprageerly.
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4 Encoding as sequence of bits

4.1 Motivation

To implement arithmetic coding efficiently, we have to make restrictions: Thera@(infinite)
real numbers, and pure integer implementations are way faster on simpésgoog as found in
fax machines (which actually use arithmetic coding in the G3 protocol).

This chapter covers an implementation with very low memory consumption (onlgegister
for the boundaries, using 32 bits in the examples) and only a few simple integierctions. The
output is a non-ambiguous sequence of bits that can be stored or sérelfyn

4.2 Abstracting from the model

One cannot express probabilities in fractions of 1 using integers. Siot@lplities equal the
frequencies of symbol occurrences in simple models, one can normaliretdhitne number of
symbols. The lower bound is the sum of frequencies of all lower symbols(iardcal order), the
upper bound is this sum plus the frequency of the current symbol:

symbol1
low_count = Z) CumCounti] ,
i=
high.count = low_count4+CumCounfsymbo],

whereCumCount contains the cumulative frequency counts. This resembles the probabilities
of the previous section in so far as one does not divide by the total tedioite adding up. This
results in the following equations:

low_count = low-total,
high.count = high-total ,

wheretotal represents the total count.

4.3 Encoding
The encoder consists of a function and static variables that store tiwt:sta@:
° mLOV\P stores the current lower bound. It is initialized with

e mHigh stores the current upper bound. Itis initialized WixiFFFFFFF, the maximum value
that fits in 31 bits.

e MStep stores a step size that is introduced later. It is not necessarily static indbdesn
but the decoder depends on this property.

Note that one can use only 31 of 32 bits to prevent overflows. We will gotimigdater. The
function declaration looks as follows:

8This implementation follows [WBM94].
9The prefix m denotes static variables. This resembles member varialolejeat oriented programming.



24 4 ENCODING AS SEQUENCE OF BITS

void Encoder( unsigned int low_count,
unsigned int high_count,
unsigned int total );

The cumulative probabilities (which are calculated by the model) of the dwsyembola; and
the next lower symbod;_1 are passed to the encoder. The encoder computes the new upper and
lower bounds from these. At first, the interval franhowto mHigh is divided intototal — steps,
resulting in a step size of

mStep = ( mHigh - mLow + 1) / total;

One has to add 1 to the differencenaifligh andmLowsincemHigh represents the open upper
bound. Therefore the interval is larger by 1. An analogy in the commoimdésystem would be
an interval from 0 to 99 where the upper bound is stored as 99. The fractional places make the
interval larger by 1 compared to 990 = 99.

This is also the reason for the limitation to 31 bitsHigh is initialized with the maximum
possible value. If one would choose 32 bit, then the additidigh - mLow + 1 would result in
an overflow, which might lead to an exception in the best case or evenradipencoding errors,
which would result in file corruption.

However the upper bound is now updated to

mHigh = mLow + mStep * high_count - 1;
and the lower bound to
mLow = mLow + mStep * low_count;

Both calculations rely on the previous valuendfow therefore overwriting it has to be the last
step. Since we are dealing with an open interval, we have to deangtigte by one to reflect this.
4.4 Example: encoding

This time we handle the same input sequence as in all previous examplesZzeleus limit
ourselves to the first two symbok). The model specifies the following data:

symbol | frequency| low_count high_count
a 4 0 4
b 2 4 6
c 1 6 7
d 1 7 8

Table 2: Model for the example 2.2
At first we initialize the encoder:
mBuffer = 0;

mLow = O;
mHigh = OX7FFFFFFF;
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Then we encode the symbols of the sequence. Note that the model is stadial scstays
constant.

1.'a

mStep = ( mHigh - mLow + 1) / total;
( OX7TFFFFFFF - 0 + 1) / 8
0x80000000 / 8

0x10000000

mHigh = mLow + mStep * high_count - 1;
0 + 0x10000000 * 4 - 1
0x40000000 - 1

OX3FFFFFFF

mLow = mLow + mStep * low_count;
0 + 0x10000000 * 0
0

mStep = ( mHigh - mLow + 1) / total;
( OX3FFFFFFF - 0 + 1)/ 8
0x40000000 / 8

0x08000000

mHigh = mLow + mStep * high_count - 1;
0 + 0x08000000 * 6 - 1
0x30000000 - 1

OX2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= 0x20000000

After these two symbols we can store any value in the interval ix29000000 to Ox2FFFFFFF.

4.5 Decoding

The task of the decoder is to follow the steps of the encoder one by omeehke have to deter-
mine the first symbol and update the bounds accordingly. This dividesstteddr functionality
into two functions:

unsigned int Decode_Target( unsigned int total );
void Decode( unsigned int low_count, unsigned int high_cou nt );

Decode_Target() determines the interval that contains the symbol. This is accomplished by
calculating the code value of the symbol:
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mStep = ( mHigh - mLow + 1) / total;
value = ( mBuffer - mLow ) / mStep;

mBuffer is the variable that contains the encoded sequence. The model can ustuthe
value to determine the encoded symbol by comparing it to the cumulative coemiils. As soon
as the proper interval is found, the boundaries can be updated like #reydwring encoding:

mHigh = mLow + mStep * high_count - 1;
mLow = mLow + mStep * low_count;

Note thatmStep is reused. That is why it was declared statically in the first place.

4.6 Example: decoder

Now we decode the sequence of bits that was generated in the encoaiinglex.4. Le0x28000000
be the value that was stored by the encoder. We initialize the decoder usifgjidlving values:

mBuffer = 0x28000000;

mLow = O;
mHigh = OX7FFFFFFF;

1. 'a’ At first we calculate a value compatible to the model ugdegode_Target()

mStep = ( mHigh - mLow + 1 ) / total;
( OX7TFFFFFFF - 0 + 1)/ 8
0x80000000 / 8

0x10000000

value = ( mBuffer - mLow ) / mStep;

( 0x28000000 - 0 ) / 0x10000000
0x28000000 / 0x10000000

2

This 2 is now compared to Table 2 which represents the model. It's found iimterwal
[0,4), therefore the encoded symbol isarWe update the bounds usibgcode() :

mHigh = mLow + mStep * high_count - 1;
0 + 0x10000000 * 4 - 1
0x40000000 - 1

OX3FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x10000000 * O
=0
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Decode_Target():

mStep = ( mHigh - mLow + 1 ) / total;
( OX3FFFFFFF - 0 + 1)/ 8
0x40000000 / 8

0x08000000

value = ( mBuffer - mLow ) / mStep;

( 0x28000000 - 0 ) / 0x08000000
0x28000000 / 0x08000000

5

Decode():

mHigh = mLow + mStep * high_count - 1;
0 + 0x08000000 * 6 - 1
0x30000000 - 1

Ox2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= (0x20000000

This 5 is located in the interval correspondingotdNow we have decoded the sequeabe
successfully.
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5 Scaling in limited ranges

5.1 Motivation

When we use the presented methods to encode several symbols, a bempadsesmLowand
mHigh converge more and more and so further encoding will be impossible asasoibre two
values coincide. However, there is a simple solution based on the followsaywtion:

5.2 E1and E2 scaling

As soon asnLowandmHigh lie in the same half of the range of numbers (in this caser >
0x40000000 ), it is guaranteed that they will never leave this range again since the fioj@ym-
bols will shrink the interval. Therefore the information about the half is ivahéfor the following
steps and we can already store it and remove it from consideration.

Given the presented implementation, the most significant bits (MSBiLoffandmHigh are
equal in this case. 0 corresponds to the lower half while 1 representplee. UAS soon as the
MSBs match, we can store them in the output sequence and shift them astis TalledE1-
respectiveE2-scaling:

while( ( mHigh < g_Half ) || ( mLow >= g_Half ) ) {
if( mHigh < g Half ) // E1

{
SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
}
else if(mLow >= g_Half ) /| E2
{
SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;
}

g_Half is the global constarx40000000 that marks the center of the range. The multiplica-
tion by 2 enlarges the interval. The addition of 1 fixes the upper bound aealavith an open
interval. It is equivalent to the more intuitive solution: Whenever a calculatievives an open
bound, add 1 before and subtract 1 after it. Adding 1 after the multiplicatfad froduces the
same result.

SetBit() adds a bit to the output sequence. The complementary function in the decode
is calledGetBit() . Both functions work sequentially, one can interpret them as FIFO queue
Seeking in the encoded sequence is neither possible nor requiredisbdba algorithm itself
works sequentially, too.

5.3 E3scaling

Though E1 and E2 scaling are a step in the right direction, they are rfatiesoif on their own.
They won't work whemmLowandmHigh converge to the center of the interval: Both stay in their
halves, but the interval soon becomes too small. The extreme case wowldlbe afOx3FFFFFFF
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for mLowand 0x40000000 for mHigh. They differ in every bit (apart from the one reserved for
overflows), but further encoding is impossible.

This is where E3 scaling comes into play: As soommaswleaves the lowest quarter (maxi-
mum value of the first quarteg_FirstQuarter ) andmHigh the highest (fourth) quarter (maxi-
mum value of the third quarteg; ThirdQuarter ), the total range is less than half of the original
range and it is guaranteed that this won’t change because of the grewinking. It is notimme-
diately determinable which half will contain the result, but as soon as the dest E2 scaling is
possible, one knows the values that one could have stored earlier ifeneeabvle to foresee this.
This might sound strange, but it's the way E3 scaling works: One enléngeasterval just as one
did with E1 or E2 scaling, but instead of storing a bit in the output sequemes,emembers that
one did a E3 scaling using the helper variabkzale :

while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter ) {
mScale++;
mLow = 2 * ( mLow - g_FirstQuarter );
mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;

On the next E1 or E2 scaling, one adds the correct bit for each E3 gdalithe output se-
guence. Using E3 scaling followed by E1 scaling means that the intervdtlvaaue fit into the
range betweepg_FirstQuarter andg_Half . This is equivalent to an E1 scaling followed by an
E2 scaling." The sequence E3-E2 can be interpreted analogous, the same goesafed ite3
scalings. Hence one has to store E3 scalings after the next E1/E2 saalimgthe inverse bit of
that scaling:

while( ( mHigh < g_Half ) || ( mLow >= g_Half ) ) {
if( mHigh < g_Half ) // E1

{
SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
Il E3
for(; mScale > 0; mScale-- )
SetBit( 1 );

}

else if(mLow >= g Half ) // E2

{
SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;
Il E3
for(; mScale > 0; mScale-- )
SetBit( 0 );

}

10we prove this on page 31.
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This coherence is illustrated by the figures 4 and 5 on page 30A betthe alphabeh :=
{a,b,c,d, e} using uniformly distributed probabilities. Figure 4 showsas the first symbol. The
corresponding interval i§.4,0.6) that covers the second and third quarter. Therefore we can
apply E3 scaling and the resulting interval covers the second and thirtegagain. After the
next E3 scaling, the interval covers more than two quarters, so we havedeed with the next
symbolb. The resulting interval i$0.375 0.5) which is contained completely in the lower half.
The E1 scaling stores a 0 in the output sequence, followed by two 1 bitssf@&3lIscalings.

Figure 5 illustrates why storing 011 was correct. Starting with the intej@gl), we apply E1
and E2 scalings according to the stored bits, meaning one E1 and two EQ)scdlive resulting
interval is the same as/in 4 which shows the result of two E3 scalings followeddE1 scaling.

Step 1 Step 2 Step 3
1 0.75 — 0.625 - 0.5
0.5 ¢ 0.5 ¢ 05 ¢ 0.4375
0+ 0.25 - 0.375 - —— 0.375

Figure 4: Application of E3 scaling

Step 1 Step 2 Step 3
1 o5-—3 05— 05+
0.5+ 0.25 0.375 0.4375 +
0+H—— 0+ 0.25 - 0.375 -

Figure 5: For comparison - without E3 scaling
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This is valid in general. Lef andg be two functions angdo f the consecutive application of
f andg. Then we can express the method as follows:
LEMMA 2 Applied to any sequence, the following equations are valid:
Elo(E3)"= (E2)"0E1,
E20 (E3)"= (E1)"0oE2.

Proof:
Leta:=low, b:= highandl := [0, 1) be the interval we are working with. The scaling functions

can be expressed as follows:
a 2a
“(;) - ()

) ()
() -

o T

QO

TN
N DN
(@2
[
NI Nl
~_

Thenth iteration results in

() - (3

a 2"a—-2"+1
E2" =
<b) <2”b 2+ 1>
e (d) _ (28" 143
b/ — \2w-2n141
2

The proof by induction can be done by the reader with little effort. Thidigsuthe following
equation:

a na-2n14 1 2Mlg—2n41
(E1o(E3)") <b> = El(znb—zn—hr%) = <2n+1b_2n+1> (8)
. a B N 2a B 2n+1a_2n+1
((E2)"oEL) (b) = (E2) <2b> = <2n+1b—2n+1 ©)

Equating/(8) and (9) implies:

Elo(E3)" = (E2)"0E1

The second identity can be proven in an analogous way. O

5.4 Example encoding

We encode the input sequenaeccedac over A = a, b, c,d,e for further illustration of the E3
scaling. The model has to be adjusted according to the Table 3 on pageh&ex@ample is
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presented in Table 4 to improve readability. The first column contains the $yh#ishould be
encoded next. The following three columns show the parameters that ssedpiEncode() .
They are followed by the computed boundsowandmHigh. The next columns contain E1 and
E2 scalings together with the resulting output bits. Underlined bits reprbgerdf E3 scalings.
The next columns show further E3 scalings and the updated boundsyddilay the required bits
to chose a value inside these bounds.

This example is limited to 7 bit integers. This is sufficient for our sequencdaarehsier to
read than 31 bit.

symbol | frequency| low_count high_count
a 2 0 2
b 1 2 3
c 3 3 6
d 1 6 7
e 1 7 8

Table 3: Model for the example of scaling functions



Sym|lc| hc|t | mStep mLow mHigh Bits | E1/2-mLow E1/2-mHigh mScale| E3-mLow E3-mHigh
a 0| 2 | 8|16 0000000 [0] 0011111 [31] 00 0000000 [0] 1111111 [127] 0

b 2 | 3 8|16 0100000 [32] 0101111 [47] 010 | 0000000 [0] 1111111 [127] 0

c 3] 6 [8]|16 0110000 [48] 1011111 [95] 1 0100000 [32] 1111111 [127]
c 3] 6 8|12 1000100 [68] 1100111 [103] 10 0

e 718 (8|9 1001111 [71] 1001111 [79] 100 | 0111000 [56] 1111111 [127] 0

d 6 | 7 (8|9 1101110 [110] 1110110 [118] 11 0111000 [56] 1011011 [91] 1 0110000 [48] 1110111 [119]
a 0| 2 |89 0110000 [48] 1000001 [65] 3 0000000 [0] 1000111 [71]
c 3|16 (8|9 0011011 [27] 0110101 [53] 0111 | 0110110 [54] 1101011 [107] 0

rest 1

Table 4: Example of scaling functions in the encoder

Sym current symbol

l_c low_count, lower bound of the cumulative frequency of the syml
h_c high_count, upper bound of the cumulative frequency of the sym
t total, total frequency count

mStep step size

mLow lower bound of the new interval

mHigh upper bound of the new interval

Bits Bits that are stored and removed by E1/E2 scalings
E1/2-mLow | lower bound after E1/E2 scaling

E1/2-mHigh| upper bound after E1/E2 scaling

mScale sum of the new and the remaining E3 scalings

E3-mLow lower bound after E3 scaling

E3-mHigh | upper bound after E3 scaling

Table 5: Explanation of columns

Dol

bol




34 5 SCALING IN LIMITED RANGES

5.5 Decoding

Since the decoder follows the steps of the encoder, the scalings woikntige Blowever, note that
one has to update the buff@Buffer , too. This works the same way the bounds are updated, one
just does not generate the subsequent bits but rather take them fremctied sequence.

/I E1 scaling

mLow = mLow * 2;

mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();

/I E2 scaling

mLow = 2 * ( mLow - g_Half );

mHigh = 2 * ( mHigh - g Half ) + 1;
mBuffer = 2 * ( mBuffer - g_Half ) + GetBit();

II' E3 scaling

mLow = 2 * ( mLow - g_FirstQuarter );

mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;
mBuffer = 2 * ( mBuffer - g_FirstQuarter ) + GetBit();

5.6 Example decoder

In the next example we decode the sequence that has been encodethgt tme. The input for
the decoder i90010101001101111 . The first 7 bits of this sequence are loaded imRuffer .
The next bits are omitted in the table to improve readability. Note that even ondiBgscthe
buffer is updated although no bits would be sent in the encoder at this sfégdad to cut off
some column names: StrisStep, Sy is Sym and Sc imScale .



St | mBuffer l.c| hc| Sy mLow mHigh Bits | E1/2-mLow E1/2-mHigh Sc E3-mLow E3-mHigh
16 | 0001010 [10] 0 2 | a | 0000000 [0] 0011111 [31] 00 0000000 [0] 1111111 [127] 0

16 | 0101010 [42] 2 3 | b | 0100000 [32] 0101111 [47] 010 | 0000000 [0] 1111111 [127] 0

16 | 1010011 [83] 3 6 | c | 0110000 [48] 1011111 [95] 1 | 0100000 [32] 1111111 [127]
12 | 0100110 [38] 3 6 | ¢ | 1000100 [68] 1100111 [103] 10 0

9 | 1001101 [77] 7 | 8 | e | 1001111 [71] 1001111 [79] 100 | 0111000 [56] | 1111111 [127] | O

9 1101111 [111] [6 | 7 | d [ 1101110 [110] | 1110110 [118] | 11 | 0111000 [56] | 1011011 [91] 1 | 0110000 [48] | 1110111 [119]
9 | 1110000 [112] 0 2 | a | 0110000 [48] 1000001 [65] 3 | 0000000 [0] 1000111 [71]
9 | 1000000 [64] 3 6 | ¢ | 0011011 [27] 0110101 [53] 0111 | 0110110 [54] 1101011 [107] 0

Table 6: Example of scaling functions in the decoder
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6 Ranges

6.1 Interval size

Since all necessary methods have been presented by now, it shoudhbthat the valuesLow
andmHigh can fall into two ranges when one iteration by the encoder or decodersisdah

e mLow< FirstQuarter< Half < mHigh,
e mLow< Half < ThirdQuarter< mHigh.

This interval contains at least one complete quarter. More is possibl@bgtiaranteed.

The calculation omStep involves a division of the interval size ligtal . If total is larger
than the interval, this integer division results in 0. The algorithm cannoeguvith this value,
so the model has to assure thatl stays always below the minimum guaranteed size of the
interval, in our case one quarter of the base range. Since we use 31thissxamples, a quarter
equals to 29 bits, sufficing for models with less thah/mbols (=512 Mbyte at 1 byte/symbol).

6.2 Alternative calculation

Literaturé! sometimes mentions another method to calculate the bounds. In our algorithm the
step size is computed first, followed by a multiplication with the cumulative frequeoignts of
the model. Sometimes this might result in quite large unused intervals:

Let the interval be of the size 7 and the model returns a value of #thdr . Then the step
size calculation resultsih / 4 = 1 because of the integer arithmetic. This way the upper bound
mHigh will not equal the previous upper bound when the last symbol is encuigd count
equals 4). Instead it is cut down to 4, hence almost one half of the intewalins unused. To
circumvent this limitation one can exchange the order of arithmetic operations:

range = mHigh - mLow + 1;
mHigh = mLow + ( high_count * range ) / total;
mLow = mLow + ( low_count * range ) / total;

Using this method results imHigh (4x7)/4 = 28/4 =7, so one can use the whole interval.
However, the new order provokes overflows due to the multiplication. leetahge bé0,15) (4
bits). The alternative method would result in 4= 12 (mod16) & an unusable value for further
calculations. Using our method results ifd7= 1 (mod 16) respective ¥4 = 4 (mod 16) which
is the expected value. To run the encoder on 32 bit registers, one has tthiemiidth of the
factors:[ld(axb+1)] < [ld(a+1)] + [ld(b+1)].

Sincetotal must not be larger than the minimal interval available (a quarter of the base
interval), it follows that

!
Id(total) < Id(range —2,
Id(total) +Id(range) < Id(register .

This means in practice that one is limited to 17 bits respectively 15 bitetidr . Because
of the lower precision and the additional division, this alternative methoduallydess efficient
than the method presented here.

11See[[BCWIO], chapter 5.2.5, page 118.
12447 = 0100+ 0111= 0010« 1110= 0001+ 1100= 1100= 12
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7 Summary of encoder and decoder implementation

En- and decoder can be pooled in one class. The only public method®aeertiyuired by users
of the en-/decoder, i.&ncode, internal functions likesetBit can be private. Static variables can
be implemented as member variables.

7.1 Encoder

The encoder can be implemented with the following interface:

void Encode( const unsigned int low_count,
const unsigned int high_count,
const unsigned int total );

void EncodeFinish();

EncodeFinish()  terminates the code correctly. At first it has to be ensured that the following
bits determine a value inside the final interval. Since we know that the intdways contains at
least one quarter, we can simply use the lower bound of that quartee &tetwo cases:

1. second quarter

mLow< FirstQuarter< Hal f < mHigh.

It is sufficient to store a O followed by a 1. That means that we select ther lbif first,
followed by the upper. Since the decoder adds 0Os to the input stream aigtdipat the end

of the stored file, this marks the lower bound of the second quarter. # than unhandled
E3 scaling, one also has to aa8cale 1 bits. One can combine this with the last 1 to a loop
overmScale+l bits.

2. third quarter

mLow< Half < ThirdQuarter< mHigh.

The second case is a bit easier to encode: One would have to write a 1o lymScale+1
0 bits, but because these are added automatically, terminating with a 1 is atffidiere-
fore no loop is required.

if( mLow < g_FirstQuarter ) // mLow < FirstQuarter < Half <= mH igh

{
SetBit( 0 );

for( int i=0; i<mScale+1; i++ ) // 1 + e3 scaling
SetBit(1);
}

else // mLow < Half < ThirdQuarter <= mHigh

{
}

SetBit( 1 ); // decoder adds zeros automatically
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7.2 Decoding

The decoder consists of the following three methods:

void DecodeStart();
unsigned int DecodeTarget( const unsigned int total );

void Decode( const unsigned int low_count,
const unsigned int high_count );

DecodeStart()  initializes the buffer by reading the first bits of the encoded input segquenc

for( int i=0; i<31; i++ ) // only use the last 31 bits
mBuffer = ( mBuffer << 1) | GetBit();

There are no further functions needed and the presentation of egcatihdecoding is fin-
ished.

We showed that overflows in integer arithmetics can be circumvented usingZ4and E3
scaling. A positive side effect is that one can send already the stordd baguential data trans-
missions like remote data transfer. Since the decoder takes only takes iotmatte bits found
in the buffer, it can start decoding as soon as 31 bits are receivad.tiNat errors in the encoded
stream corrupt the whole transmission. One has to split the message or sgldegundancy to
get a robust implementation.

7.3 Termination of the decoding process

Since the bit sequence does not imply an end of the encoded messapasdneadd additional
information.

The simplest way is to add a file header that contains the length of the file. dvdisage is
that one can only encode files of a fixed length or one has to have raadoess on the output
file. Both is not available for example in fax machines that use special endddy instead. This
symbol is encoded using tminimal probability and must not appear in the regular data stream.
The decoder terminates as soon as this symbol is read.

The following chapter provides a closer look to the efficiency of arithmetingpand gives a
comparison with Huffman coding.
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8 Efficiency

8.1 Looking at the efficiency

In chapter 3.6 we demonstrated, that a sequencannot be stored using less thdr) space
without any loss. From that we can derive theeragdength of an Arithmetic Code for a sequence
S™ of lengthm:

lam = > Pu(x) 1(x) (10)
1

- ZPN.(X) {[Id PM(X)}H] (11)
1

< ZPM(X) [Id A +1+1] (12)

= = Pu(x) 1dPu(x)+2% Ru(x) (13)

= Hu(S™)+2 (14)

And since we already know that the average length is always greateuat ® the entropy, it
turns out that

Hu (S™) < lam < Hu(S™)+2. (15)
The average length per symbal also known agompression ratiof the Arithmetic Code, is
A= I*‘(Tm) So we get the following bounds fix:

Hi(S™) . Hu(S™) 2

MY ) oM ) 2 (16)

m m m’
Also we know that the entropy of the sequence is nothing but the length eétheence times the
average entropy of every syml@l:
Hw (S™) = m- Hy (X) (17)

For the bounds fok, this means

() < Ia < Hiy (0 + 2. (18)

By examining this comparison one can easily see that he compressioharégiguaranteed to
come close to the entropy, which itself is just determined by the middeThis is the desired
effect.

8.2 Comparison to Huffman Coding

After having pointed out the efficiency of Arithmetic Coding in the last sutisecwe now want
to compare this efficiency to the one of the well known Huffman Code. Letaoall example
3.6.1. The average length of the code can be calculated as

| = 0,5-2+0,25-3+0,125-4+0,125-4
= 2,75 bits/symbo] .

13proof in [Say00] p.50
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But the entropy of this sequence is rather:

Hw(0 = Y P@)Id 57~

Hu(x) = - ( 4 P(&) Id Hw(aa)>
+

1 1

4 4 "8
- _<%.(—1)+% (—2)+%-(—3>+%-(—3>>
= 2,25

So it turns out that the length of the code thambolwiseArithmetic Coding produces is here
not very close to the entropy. And even worse: If one encoded this sequesing Huffman
Coding, one would achieve the entropy completely. Why is that? That is simplyadiine fact
that Huffman Coding isdeal if and only if one can assign whole bits for the single probabilities
(because the constraint of Huffman Coding is that it cannot use fragtibits). And this is here
obviously the case because because all probabilities are (hegativefspaf 2. However, exactly
this is almost never the case in practical use - but unfortunately doesewand many people
from using such arguments as justification for Huﬁr@mpart from that, Arithmetic Coding is
not even worse is such cases. However, obviously it cannot peday better either, because the
lower bound is already achieved by Huffman. Another common assumpticoniparisons of
efficiency is that the sequence of symbols is independent from its cortsxt.this will actually
never be the case for real life data sources. However, use of thisypen leads to much easier
equations, which fortunately are not too far from reality again. Equati@ for instance uses
this precondition. Now one can easily see that instead of using the compéti8pone could
also work with [(16). However, the latter is just unnecessarily complicatelddéfers just by
an unimportant factor. One can proof that the efficiency of the HuffmadeQs constraint as
follows'®:

Hu(S) <Is<Hm(S)+1. (19)

For Extended Huffmarwhich is a special version of Huffman Coding, mergingymbols together
to longer, single symbols, the efficiency rises to

Hun(9) <1< H (9) + ¢ (20)
This is obviously more efficient for non-utopian sequenéasHS: P(x) # 2" vn € N). If one now
consider$ approachingnand compares this with equation (18), one could come to the conclusion
that Huffman Coding here has an advantage over Arithmetic Coding, atittbisgbenefit shrinks
with raising lengthm of the sequence. However, this property is in real life not valid becanse
must take with into account thatcannot be chosen arbitrarily big. Let us consider working over
an alphabet of lengtk and to groupb symbols together then we get a codebook sizkPofFor
plausible values df = 16 andb = 20 this already leads to the value??8which is way too big for
every known RAM at the current time. $ds constrained by simple physics, while the length of
the sequencmincreases more and more. So in a practical view, Arithmetic Coding has akso he
its advantages.

145ee also [Say00] ch. 4.5.
15A1s0 see|[Say00] ch. 3.2.3.
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Another probable benefit of Arithmetic Coding depends on the data sdDreecan show that
Huffman Coding never overcomes a compression rati®@d86+ Pnay) - Hu (S) for an arbitrary
sequences with Pyax being the largest of all occurring symbol probabilities Obviously, for
large alphabets it will turn out that one achieves a relatively small valugfg¢ leading to better
results for the Huffman Code. This gives indeed a good justification foln sucode on large
alphabets. Compared to that, for small alphabets, which oppositely lead &r lpgababilities,
Arithmetic Coding can win the race again. Applications using such small alphed®r instance
the compression standar@8 andG4, which are used for fax transmission. Here we have a binary
alphabet (containing two symbols, one for black and one for white) angrtieability for a white
pixel is usually very high. This leads to a value a4 of nearly 1, which disqualifies Huffman
Coding and gives us Arithmetic Coding as first choice.

Considering practical results [Can], it turns out that Arithmetic Coding imallsstep ahead
for most of the real life data sources. That is due to the fact that Huff@wting is really just
optimal for the almost utopian case that all symbol probabilities are powersoobecause in
this case the Huffman tree has minimal depth. However, since this is almostthevease, the
Huffman Coder is usually forced to assign whole numbers of bits for symidadse an Arithmetic
Coder could assign fractions of bits at the same time.

Another benefit of Arithmetic Coding, which we will not investigate any furtinethis paper,
is that it can be adapted to work with various probability models. As we saveinqurs chapters,
one has just to attach an appropriate optimized model for every data sduredasic coding /
decoding algorithm remains unchanged, so that implementation of multiple codetatigely
straightforward. This is especially an advantage if one consataptivemodels, which require
complex changes of the tree structure using the Huffman algorithm.

We will now explain such adaptive models in further detail, because couhparthe previ-
ously used static models, they are usually much more powerful.

16[Say00] p.37f
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9 Alternative models

In previous chapters we used the cumulative function

k
K(a) = 3 Pu(@)

to code the symbdly, being thek-th symbol of the alphabeX. In reality, the probabilitie®y (&),
(i=1,...,]A]) are therefore retrieved from the modél”. However, until now, we have withheld
if this model is capable of determining the probability of a symdaih a sequenc&at all. And
if it is, how does it work? We will now try to answer these questions.

First of all, we want to note that the entroply; (S) is depended on the modél by definition.
Therefore, regardless how good or bad our model is, the ArithmeticrGdaeays achieves the
best possible result (neglecting some few bits of overhead). Howeigelother bound(recall
equation(ﬁ8)) can still be lowered further using appropriate models.

9.1 Order-n models

Hitherto we considered all symbols as being independent in a stochaste. sklowever, it is
actually quite common that probabilities change dependent on the curmeixtoln German
texts for example the average probability of the letter 'u’ is approximately 4.3BU if one
considers the predecessor being a 'q’, the probability for seeingiacrgases to almost 100%.

Models which take the context of a symbol with into account are callROER-N MODELS,
whereN stands for the size of the context. So for example an Order-3 model wilyalneturn
the probability in relation to the last 3 symbols seen so far.

9.2 Adaptive Models

Most implementations are developed for varidifferentdata sources. This means that usually the
exact probability distribution of the data source is unknown. Also it mightiheays be possible
to simply count the occurring symbols. Just consider a fax transmissiantrahsmission shall
already begin when the first page becomes read and the rest of thaelu¢s) and its symbol
probabilities are still unknown. So the only useful thing one can do is panfig an estimation.

And now it seems obvious that this estimation musabaptedo probabilities of the symbols
which have already been read by the current position. That is why in #isis we speak of an
adaptive modelLet us have a look at the following example:

9.2.1 Example

As an easy demonstration we chooseadaptive order-0 modeWwhereorder-0 means that our
model always considers the probability of just the symbol, without any gbnte

To achieve that, it is sufficient enough to define an akagt the beginning, which has the
size of the cardinality of the alphabEt All array values become initialized with the value 0.
Now, before each coding step, a symba$ passed from the input stream to the model and this
increments the appropriate array entry as well as the absolute symbdécruAfterwards the
probabilities are redistributed using the assignment

1’Depending on the implementation, the model may also pass the oapydirectly.
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PY@ PY®) PR PY()

s Kla] K[b] K[c] K[d] | z

a 1 0 0 0|1 1 0 0 0
b 1 1 0 0 (2| 1/2 1/2 0 0
a 2 1 0 0 |3] 2/3 1/3 0 0
d 2 1 0 1 14| 1/2 1/4 0 1/4

Table 7: Function of an adaptive order-0 model

Let us for example consider the following alphabet
A=ab,c,d

and encode the sequenalad Table 7 gives the calculation results for this model. It turns out
that the probability values which are assigned after the last symbol waareaqual to thesal
probabilities of the symbols. So it is obvious that the calculated probabilities pogtty close to
the real ones for long sequences.

Since the initialization is known in advance and every assignment is done\stspbafter
reading each symbol, the decoder can retrace these steps withoubbtgngs. It just updates the
model in the very same way. This leads to the advantage that no updatedbifitigs must be
sent over the data stream. They can just be generated from the datathidbcoder receives
anyway.

9.3 Additional models

For some applications, such as mixed files which consist of very distinctpdataions with
different probability distributions, it might be useful to detect rapid clesngf the probability
distribution and - once such a jump is detected - to reinitialize the &rafythe model e.g. with
a uniform distribution. This usually leads to a better compression for the foltpywart of the
sequence because the model can adapt much faster.

Obviously one can imagine a lot of different additional models which might dieebfor
appropriate data sources. However, we will not go any further into teimé¢hbecause the imple-
mentation of the models is actually independent from the mechanism of ArithmediogCand
there is already a lot of literature around about stochastic modeling. [Daltit imiige some useful
hints.
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10 Conclusion

After all these consideration, let us now recap and check if we havewachwhat we promised in
the beginning. With Arithmetic Coding, we have described a coding methodhwéhsuitable for
data compression. This was proven by showing that the requirementdjettive encoding are
met. Implementation can nowadays employ integer as well as floating point arittmé&Bcave
seen, that Arithmetic Coding can work sequentially, encoding symbol pelalyand thus is able
to send already encoded parts of a message before it is fully known.piidperty is exploited
when applying the three scaling functions, which enlarge the working gdteérsuch a way that
overflows do not occur and even finite arithmetics suffice. Also we stiaypethe bounds of the
efficiency of general encoding and noted, that the average codh lEmgany symbol of an input
sequence approaches closer and closer to the model-dependepy evithoraising length of the
input sequence. We also demonstrated in what cases Arithmetic Codingatlypefficient and
in what cases it is only as efficient as Huffman Coding. We noted that tig@mssion ratio that
can be reached by any encoder under a given model is actually mbbydde quality of that
model. Here we also realized another advantage of Arithmetic Coding, siattewits the easy
exchange of statistical models, that might be optimized for certain input data.

We conclude that we have achieved our goal. In the end of this papeowevant to share
some thoughts about fields of improvement and applied techniques.

10.1 Remember: Compression has its bounds

Although Arithmetic Coding has been established and optimized over the pdst2Dyears,
every now and then a new variation appears. Interested readers nsightorobserve the news-
groupcomp.compressiofor new techniques and further insights. However, beware: Sometimes
people claim having invented an outstanding algorithm that performs $&weza better than any-
thing seen before. Frequently they are exaggerating, sometimes simplingytiwat Arithmetic
Codingis aboutosslesscoding. We know for sure that the Shannon theorem [WS49] guaran-
tees that compression below the entropy of the source is impossible. Omengave as much
redundancy from one’s data as one likes, but entropy is proven tdvaeddimit.

10.2 Methods of Optimization

However one can optimize one’s algorithms in at least two dimensions: memayy asd speed.

10.2.1 Memory Usage

Arithmetic Coding is almost optimal in terms of memory usage. It uses only a coastanunt of
memory for simple models (elaborate models might take some more, but usuallydes$séar).
Furthermore it generates a code that cannot be compressed any. iNdtesthat this code depends
on the modelH(S) < Hw(S) < |Cod€S)|. We have to differentiate between the natural entropy
of the source sequende(S), which represents the mathematical lower bound, and the bound that
is set by our modeHw (S). Arithmetic Codingreacheldy (S), but that might be far from perfect
if one’s model is incapable of representing the input data very well.

Since input data is not predictable in a general way, one will have to finddelntleat works
for one specific application context. Arithmetic Coding allows a modular desidginet the coder
can interact with different models, even switching between them while codhgte a lot of
models have been developed, one of the most popular model familRBNks(Prediction with
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partial match) They are quite efficient due to varying context length, but most of tharagkd
ones lack a sound mathematical background. Visit [Dat] for further inédion.

10.2.2 Speed

The speed of Arithmetic Coding coders has been improved over the Yei@ger implementations
are common, but with improving floating point power of modern CPUs this way trhigtome an
alternative. We showed|in 3.6 that an implementation based on floating poimetiiths possible.
A very efficientinteger implementation is tRange CodefMar79], [Cam99]. It performs scaling
byte-wise, thus eliminating large parts of the bit-fiddling which is a major perfocenproblem on
current CPUs. Speed improvements up to 50% are reported whereaslthsize increases only
by 0.01%. These numbers have to be seen with caution since they only tefigmerformance
of the coder, not of the model. However, the bottleneck of todays implemeamgaifoArithmetic
Coding is almost always the model. As usual one can get an overview albthis on [Dat].

As one can see, the most interesting research fields in the context of Atiiti®oeling are the
models. Code size, memory usage and speed depends mainly on thenswheelamplemented
coder can be seen as a minor task, especially since Arithmetic Codingitsetfuimdated very
well.
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A Areference implementation in C++

also available athttp://ac.bodden.de

This implementation should present the whole algorithm in a non-ambiguous wague&a
any open questions regarding implementation details. We use a simple adag¢iv® anodel as
describes in chapter 9.2. Therefore the compression ratio is quite lownbutan exchange the
model anytime, just derive a new one from the base dlagsl|l .

A.1 Arithmetic Coder (Header)

#ifndef _ ARITHMETICCODERC H__
#define __ ARITHMETICCODERC_H__

#include <fstream>
using namespace std;

class ArithmeticCoderC

{

public:
ArithmeticCoderC();

void SetFile( fstream *file );

void Encode( const unsigned int low_count,
const unsigned int high_count,
const unsigned int total );
void EncodeFinish();

void DecodeStart();
unsigned int DecodeTarget( const unsigned int total );
void Decode( const unsigned int low_count,

const unsigned int high_count );

protected:
Il bit operations
void SetBit( const unsigned char bit );
void SetBitFlush();
unsigned char GetBit();

unsigned char mBitBuffer;
unsigned char mBitCount;

Il in-loutput stream
fstream *mFile;

/I encoder & decoder
unsigned int mLow;
unsigned int mHigh;
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unsigned int mStep;
unsigned int mScale;

/I decoder
unsigned int mBuffer;

3

#endif

A.2 Arithmetic Coder

#include "ArithmeticCoderC.h"
#include "tools.h"

/I constants to split the number space of 32 bit integers
/I most significant bit kept free to prevent overflows
const unsigned int g_FirstQuarter = 0x20000000;

const unsigned int g_ThirdQuarter = 0x60000000;

const unsigned int g_Half = 0x40000000;

ArithmeticCoderC::ArithmeticCoderC()
{

mBitCount
mBitBuffer

0;
0;

mLow = 0;
mHigh = OX7FFFFFFF; /I just work with least significant 31 bi ts
mScale = 0;

mBuffer = 0;
mStep = 0;
}

void ArithmeticCoderC:;SetFile( fstream *file )
{
mFile = file;

}

void ArithmeticCoderC::SetBit( const unsigned char bit )
{

/l add bit to the buffer

mBitBuffer = (mBitBuffer << 1) | bit;

mBitCount++;

if(mBitCount == 8) // buffer full
{

Il write
mFile->write(reinterpret_cast<char*>(&mBitBuffer),s izeof(mBitBuffer));
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mBitCount = 0;
}
}
void ArithmeticCoderC::SetBitFlush()
{

Il fill buffer with 0 up to the next byte
while( mBitCount = 0 )
SetBit( 0 );
}

unsigned char ArithmeticCoderC::GetBit()
{
if(mBitCount == 0) // buffer empty
{
if( !( mFile->eof() ) ) // file read completely?
mFile->read(reinterpret_cast<char*>(&mBitBuffer),si zeof(mBitBuffer));
else
mBitBuffer = 0; // append zeros

mBitCount = 8;
}

/I extract bit from buffer

unsigned char bit = mBitBuffer >> 7;
mBitBuffer <<= 1;

mBitCount--;

return bit;

}

void ArithmeticCoderC::Encode( const unsigned int low_co unt,
const unsigned int high_count,
const unsigned int total )
/I total < 2729
{
/I partition number space into single steps
mStep = ( mHigh - mLow + 1 ) / total; // interval open at the top => +1

Il update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to p=>-1

/I update lower bound
mLow = mLow + mStep * low_count;

/I apply elle2 scaling
while( ( mHigh < g_Half ) || ( mLow >= g_Half ) )

{



A.2 Arithmetic Coder

if( mHigh < g_Half )

{
SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

Il perform e3 scalings
for(; mScale > 0; mScale-- )

SetBit( 1 );
}
else if( mLow >= g_Half )
{
SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;

Il perform e3 scalings
for(; mScale > 0; mScale-- )

SetBit( 0 );
}

}
Il e3
while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter
{

Il keep necessary e3 scalings in mind

mScale++;

mLow = 2 * ( mLow - g_FirstQuarter );

mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;

}
}

void ArithmeticCoderC::EncodeFinish()
{

Il There are two possibilities of how mLow and mHigh can be dis
/I which means that two bits are enough to distinguish them.

if( mLow < g_FirstQuarter ) // mLow < FirstQuarter < Half <= mH

{
SetBit( 0 );

for( int i=0; i<mScale+1; i++ ) // perform e3-scaling

SetBit(1);
}

else // mLow < Half < ThirdQuarter <= mHigh

{
}

SetBit( 1 ); // zeros added automatically by the decoder; no n
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/I empty the output buffer
SetBitFlush();

}

void ArithmeticCoderC::DecodeStart()
{
/I Fill buffer with bits from the input stream
for( int i=0; i<31; i++ ) // just use the 31 least significant b its
mBuffer = ( mBuffer << 1 ) | GetBit();
}

unsigned int ArithmeticCoderC::DecodeTarget( const unsi gned int total )
/I total < 2729
{
Il split number space into single steps
mStep = ( mHigh - mLow + 1 ) / total; // interval open at the top => +1

/I return current value
return ( mBuffer - mLow ) / mStep;

}

void ArithmeticCoderC::Decode( const unsigned int low_co unt,
const unsigned int high_count )
{
/I update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to p => -1

Il update lower bound
mLow = mLow + mStep * low_count;

I elle2 scaling
while( ( mHigh < g_Half ) || ( mLow >= g_Half ) )
{
if( mHigh < g_Half )
{
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();
}

else if( mLow >= g_Half )
{
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;
mBuffer = 2 * ( mBuffer - g_Half ) + GetBit();
}

mScale = 0;
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Il e3 scaling
while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter

{

mScale++;

mLow = 2 * ( mLow - g_FirstQuarter );

mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1,
mBuffer = 2 * ( mBuffer - g_FirstQuarter ) + GetBit();

A.3 Model Base Class (Header)

#ifndef _ MODELI_H__
#define _ MODELI_H__

#include "ArithmeticCoderC.h"

enum ModeE

{
MODE_ENCODE = 0,

MODE_DECODE
3

class Modell

{
public:
void Process( fstream *source, fstream *target, ModeE mode

protected:
virtual void Encode() = 0;
virtual void Decode() = 0;

ArithmeticCoderC mAC;
fstream *mSource;
fstream *mTarget;

3

#endif

A.4 Model Base Class
#include "Modell.h"

void Modell::Process( fstream *source, fstream *target, M

{

mSource = SOUrce;
mTarget = target;

odeE mode )
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if( mode == MODE_ENCODE )

{
mAC.SetFile( mTarget );

/I encode
Encode();

mAC.EncodeFinish();

}
else // MODE_DECODE

{
mAC.SetFile( mSource );

mAC.DecodeStart();

/I decode
Decode();

A.5 Model Order 0 (Header)

#ifndef _ MODELORDEROC_H__
#define _ MODELORDEROC H__

#include "Modell.h"

class ModelOrderOC : public Modell

{
public:
ModelOrder0C();

protected:
void Encode();

void Decode();

unsigned int mCumCount[ 257 |;
unsigned int mTotal;

3

#endif

A.6 Model Order O
#include "ModelOrder0C.h"

ModelOrder0C::ModelOrder0C()

A A REFERENCE IMPLEMENTATION IN C++
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{

Il initialize probabilities with 1
mTotal = 257; /| 256 + escape symbol for termination
for( unsigned int i=0; i<257; i++ )

mCumCount[i] = 1;

}

void ModelOrder0C::Encode()
{

while( 'mSource->eof() )

{

unsigned char symbol;

I read symbol
mSource->read( reinterpret_cast<char*>(&symbol), size of( symbol ) );

if( 'mSource->eof() )
{
/I cumulate frequencies
unsigned int low_count = 0;
for( unsigned char j=0; j<symbol; j++ )
low_count += mCumCount[j];

I encode symbol
mAC.Encode( low_count, low_count + mCumCount[jj, mTotal ) :

/I update model
mCumCount] symbol [++;
mTotal++;

}
}

Il write escape symbol for termination
mAC.Encode( mTotal-1, mTotal, mTotal );

}

void ModelOrder0OC::Decode()
{

unsigned int symbol;

do
{

unsigned int value;

Il read value
value = mAC.DecodeTarget( mTotal );
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unsigned int low_count = 0;

Il determine symbol
for( symbol=0; low_count + mCumCount[symbol] <= value; sym bol++ )
low_count += mCumCount[symbol];

Il write symbol
if( symbol < 256 )
mTarget->write( reinterpret_cast<char*>(&symbol), siz eof( char ) );

/I adapt decoder
mAC.Decode( low_count, low_count + mCumCount[ symbol ] );

Il update model
mCumCount[ symbol ]++;
mTotal++;

}

while( symbol = 256 ); // until termination symbol read

}

A.7 Tools

#ifndef __ TOOLS H
#define __ TOOLS H__

int inline min( int a, int b )

{

return a<b?a:b;

3

#endif

A.8 Main

#include <iostream>
#include <fstream>
using namespace std;

#include "ModelOrder0C.h"

Il signature: "ACMC" (0x434D4341, intel byte order)
/I (magic number for recognition of encoded files)
const int g_Signature = 0x434D4341,;

int __cdecl main(int argc, char *argv[))

{

cout << "Arithmetic Coding" << endl;
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if( argc 1= 3)
{

cout << "Syntax: AC source target" << endl;
return 1;

}

fstream source, target;
Modell* model;

Il choose model, here just order-0
model = new ModelOrder0C;

source.open( argv[l], ios:in | ios:binary );
target.open( argv[2], ios::out | ios::binary );

if( !source.is_open() )

{
cout << "Cannot open input stream";
return 2;
}
if( 'target.is_open() )
{
cout << "Cannot open output stream";
return 3;
}
unsigned int signature;
source.read(reinterpret_cast<char*>(&signature),siz eof(signature));
if( signature == g_Signature )
{

cout << "Decoding " << argv[l] << " to " << argv[2] << endl;
model->Process( &source, &target, MODE_DECODE );
}

else
{
cout << "Encoding " << argv[l] << " to " << argv[2] << endl;
source.seekg( 0, ios::beg );
target.write( reinterpret_cast<const char*>(&g_Signat ure),
sizeof(g_Signature) );
model->Process( &source, &target, MODE_ENCODE );

}

source.close();
target.close();

return O;
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